Yanling Zhao, Han Yan, Ke Liu, Jiangping Ma, Wenlan Sun, Hejin Lai, Hongli Li, Jianbang Gu, He Huang
{"title":"Acetylcholine receptor-β inhibition by interleukin-6 in skeletal muscles contributes to modulating neuromuscular junction during aging.","authors":"Yanling Zhao, Han Yan, Ke Liu, Jiangping Ma, Wenlan Sun, Hejin Lai, Hongli Li, Jianbang Gu, He Huang","doi":"10.1186/s10020-024-00943-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Aging-related strength decline contributes to physiological deterioration and is a good predictor of poor prognosis. However, the mechanisms underlying neuromuscular junction disorders affecting contraction in aging are not well described. We hypothesized that the autocrine effect of interleukin (IL)-6 secreted by skeletal muscle inhibits acetylcholine receptor (AChR) expression, potentially causing aging-related strength decline. Therefore, we investigated IL-6 and AChR β-subunit (AChR-β) expression in the muscles and sera of aging C57BL/6J mice and verified the effect of IL-6 on AChR-β expression.</p><p><strong>Methods: </strong>Animal experiments, in vitro studies, bioinformatics, gene manipulation, dual luciferase reporter gene assays, and chromatin immunoprecipitation experiments were used to explore the role of the transcription cofactor peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) and its interacting transcription factors in the IL-6-mediated regulation of AChR-β expression.</p><p><strong>Results: </strong>IL-6 expression gradually increased during aging, inhibiting AChR-β expression, which was reversed by tocilizumab. Both tocilizumab and the PGC1α agonist reversed the inhibiting effect of IL-6 expression on AChR-β. Compared to inhibition of signal transducer and activator of transcription 3, extracellular signal-regulated kinases 1/2 (ERK1/2) inhibition suppressed the effects of IL-6 on AChR-β and PGC1α. In aging mouse muscles and myotubes, myocyte enhancer factor 2 C (MEF2C) was recruited by PGC1α, which directly binds to the AChR-β promoter to regulate its expression.</p><p><strong>Conclusions: </strong>This study verifies AChR-β regulation by the IL-6/IL-6R-ERK1/2-PGC1α/MEF2C pathway. Hence, evaluating muscle secretion, myokines, and AChRs at an earlier stage to determine pathological progression is important. Moreover, developing intervention strategies for monitoring, maintaining, and improving muscle structure and function is necessary.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"171"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468496/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00943-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Aging-related strength decline contributes to physiological deterioration and is a good predictor of poor prognosis. However, the mechanisms underlying neuromuscular junction disorders affecting contraction in aging are not well described. We hypothesized that the autocrine effect of interleukin (IL)-6 secreted by skeletal muscle inhibits acetylcholine receptor (AChR) expression, potentially causing aging-related strength decline. Therefore, we investigated IL-6 and AChR β-subunit (AChR-β) expression in the muscles and sera of aging C57BL/6J mice and verified the effect of IL-6 on AChR-β expression.
Methods: Animal experiments, in vitro studies, bioinformatics, gene manipulation, dual luciferase reporter gene assays, and chromatin immunoprecipitation experiments were used to explore the role of the transcription cofactor peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) and its interacting transcription factors in the IL-6-mediated regulation of AChR-β expression.
Results: IL-6 expression gradually increased during aging, inhibiting AChR-β expression, which was reversed by tocilizumab. Both tocilizumab and the PGC1α agonist reversed the inhibiting effect of IL-6 expression on AChR-β. Compared to inhibition of signal transducer and activator of transcription 3, extracellular signal-regulated kinases 1/2 (ERK1/2) inhibition suppressed the effects of IL-6 on AChR-β and PGC1α. In aging mouse muscles and myotubes, myocyte enhancer factor 2 C (MEF2C) was recruited by PGC1α, which directly binds to the AChR-β promoter to regulate its expression.
Conclusions: This study verifies AChR-β regulation by the IL-6/IL-6R-ERK1/2-PGC1α/MEF2C pathway. Hence, evaluating muscle secretion, myokines, and AChRs at an earlier stage to determine pathological progression is important. Moreover, developing intervention strategies for monitoring, maintaining, and improving muscle structure and function is necessary.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.