Yinghua Chen, Cassandra Villani, Amudha Ganapathy, Anne George
{"title":"Transcriptome profiling of DPP stimulated DPSCs identifies the role of autophagy in odontogenic differentiation","authors":"Yinghua Chen, Cassandra Villani, Amudha Ganapathy, Anne George","doi":"10.1016/j.jsb.2024.108134","DOIUrl":null,"url":null,"abstract":"<div><div>Dentin phosphophoryn (DPP), synthesized and processed predominantly by the odontoblasts, serves both a structural and signaling role in dentin. In the ECM, DPP functions as an avid calcium and collagen binding protein and it also plays a crucial role as a scaffold for cell attachment and survival. The signaling function of DPP was demonstrated when undifferentiated mesenchymal cells stimulated with DPP, mediated calcium signaling through release of intracellular Ca<sup>2+</sup>. The objective of this study was to identify potentially novel signaling mechanisms that mediate odontoblast differentiation. Therefore, transcriptomes of DPSCs (dental pulp stem cells) with or without DPP stimulation were compared by bulk RNA-seq. Analysis of the unbiased RNA-seq data were subjected to functional enrichment analysis using Gene Ontology (GO) and KEGG pathways. Results identified several upregulated genes which were associated with autophagy, that were subsequently validated by RT-PCR. Western blotting analysis confirmed the up regulation of several autophagy markers such as ATG5, BECN1 and LC3A/B at specific time points. Autophagosome formation was also observed with DPP treatment. Additionally, autophagy supported a role for odontoblast differentiation of DPSCs. These findings suggest that DPP mediated autophagy might be a potential mechanism for the survival and terminal differentiation of DPSCs.</div></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":"216 4","pages":"Article 108134"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847724000741","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dentin phosphophoryn (DPP), synthesized and processed predominantly by the odontoblasts, serves both a structural and signaling role in dentin. In the ECM, DPP functions as an avid calcium and collagen binding protein and it also plays a crucial role as a scaffold for cell attachment and survival. The signaling function of DPP was demonstrated when undifferentiated mesenchymal cells stimulated with DPP, mediated calcium signaling through release of intracellular Ca2+. The objective of this study was to identify potentially novel signaling mechanisms that mediate odontoblast differentiation. Therefore, transcriptomes of DPSCs (dental pulp stem cells) with or without DPP stimulation were compared by bulk RNA-seq. Analysis of the unbiased RNA-seq data were subjected to functional enrichment analysis using Gene Ontology (GO) and KEGG pathways. Results identified several upregulated genes which were associated with autophagy, that were subsequently validated by RT-PCR. Western blotting analysis confirmed the up regulation of several autophagy markers such as ATG5, BECN1 and LC3A/B at specific time points. Autophagosome formation was also observed with DPP treatment. Additionally, autophagy supported a role for odontoblast differentiation of DPSCs. These findings suggest that DPP mediated autophagy might be a potential mechanism for the survival and terminal differentiation of DPSCs.
期刊介绍:
Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure.
Techniques covered include:
• Light microscopy including confocal microscopy
• All types of electron microscopy
• X-ray diffraction
• Nuclear magnetic resonance
• Scanning force microscopy, scanning probe microscopy, and tunneling microscopy
• Digital image processing
• Computational insights into structure