{"title":"Nonparametric Dynamic Granger Causality based on Multi-Space Spectrum Fusion for Time-varying Directed Brain Network Construction.","authors":"Chanlin Yi, Jiamin Zhang, Zihan Weng, Wanjun Chen, Dezhong Yao, Fali Li, Zehong Cao, Peiyang Li, Peng Xu","doi":"10.1109/JBHI.2024.3477944","DOIUrl":null,"url":null,"abstract":"<p><p>Nonparametric estimation of time-varying directed networks can unveil the intricate transient organization of directed brain communication while circumventing constraints imposed by prescribed model-driven methods. A robust time-frequency representation - the foundation of its causality inference - is critical for enhancing its reliability. This study proposed a novel method, i.e., nonparametric dynamic Granger causality based on Multi-space Spectrum Fusion (ndGCMSF), which integrates complementary spectrum information from different spaces to generate reliable spectral representations to estimate dynamic causalities across brain regions. Systematic simulations and validations demonstrate that ndGCMSF exhibits superior noise resistance and a powerful ability to capture subtle dynamic changes in directed brain networks. Particularly, ndGCMSF revealed that during instruction response movements, the laterality in the hemisphere ipsilateral to the hemiplegic limb emerges upon instruction onset and diminishes upon task accomplishment. These intrinsic variations further provide reliable features for distinguishing two types of hemiplegia (left vs. right) and assessing motor functions. The ndGCMSF offers powerful functional patterns to derive effective brain networks in dynamically changing operational settings and contributes to extensive areas involving dynamical and directed communications.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3477944","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Nonparametric estimation of time-varying directed networks can unveil the intricate transient organization of directed brain communication while circumventing constraints imposed by prescribed model-driven methods. A robust time-frequency representation - the foundation of its causality inference - is critical for enhancing its reliability. This study proposed a novel method, i.e., nonparametric dynamic Granger causality based on Multi-space Spectrum Fusion (ndGCMSF), which integrates complementary spectrum information from different spaces to generate reliable spectral representations to estimate dynamic causalities across brain regions. Systematic simulations and validations demonstrate that ndGCMSF exhibits superior noise resistance and a powerful ability to capture subtle dynamic changes in directed brain networks. Particularly, ndGCMSF revealed that during instruction response movements, the laterality in the hemisphere ipsilateral to the hemiplegic limb emerges upon instruction onset and diminishes upon task accomplishment. These intrinsic variations further provide reliable features for distinguishing two types of hemiplegia (left vs. right) and assessing motor functions. The ndGCMSF offers powerful functional patterns to derive effective brain networks in dynamically changing operational settings and contributes to extensive areas involving dynamical and directed communications.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.