{"title":"Feasibility of shortening scan duration of <sup>18</sup>F-FDG myocardial metabolism imaging using a total-body PET/CT scanner.","authors":"Xiaochun Zhang, Zeyin Xiang, Fanghu Wang, Chunlei Han, Qing Zhang, Entao Liu, Hui Yuan, Lei Jiang","doi":"10.1186/s40658-024-00689-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate <sup>18</sup>F-FDG myocardial metabolism imaging (MMI) using a total-body PET/CT scanner and explore the feasible scan duration to guide the clinical practice.</p><p><strong>Methods: </strong>A retrospective analysis was conducted on 41 patients who underwent myocardial perfusion-metabolism imaging to assess myocardial viability. The patients underwent <sup>18</sup>F-FDG MMI with a total-body PET/CT scanner using a list-mode for 600 s. PET data were trimmed and reconstructed to simulate images of 600-s, 300-s, 120-s, 60-s, and 30-s acquisition time (G600-G30). Images among different groups were subjectively evaluated using a 5-point Likert scale. Semi-quantitative evaluation was performed using standardized uptake value (SUV), myocardial to background activity ratio (M/B), signal to noise ratio (SNR), contrast to noise ratio (CNR), contrast ratio (CR), and coefficient of variation (CV). Myocardial viability analysis included indexes of Mismatch and Scar. G600 served as the reference.</p><p><strong>Results: </strong>Subjective visual evaluation indicated a decline in the scores of image quality with shortening scan duration. All the G600, G300, and G120 images were clinically acceptable (score ≥ 3), and their image quality scores were 4.9 ± 0.3, 4.8 ± 0.4, and 4.5 ± 0.8, respectively (P > 0.05). Moreover, as the scan duration reduced, the semi-quantitative parameters M/B, SNR, CNR, and CR decreased, while SUV and CV increased, and significant difference was observed in G300-G30 groups when comparing to G600 group (P < 0.05). For myocardial viability analysis of left ventricular and coronary segments, the Mismatch and Scar values of G300-G30 groups were almost identical to G600 group (ICC: 0.968-1.0, P < 0.001).</p><p><strong>Conclusion: </strong>Sufficient image quality for clinical diagnosis could be achieved at G120 for MMI using a total-body PET/CT scanner, while the image quality of G30 was acceptable for myocardial viability analysis.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"83"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467154/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00689-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To evaluate 18F-FDG myocardial metabolism imaging (MMI) using a total-body PET/CT scanner and explore the feasible scan duration to guide the clinical practice.
Methods: A retrospective analysis was conducted on 41 patients who underwent myocardial perfusion-metabolism imaging to assess myocardial viability. The patients underwent 18F-FDG MMI with a total-body PET/CT scanner using a list-mode for 600 s. PET data were trimmed and reconstructed to simulate images of 600-s, 300-s, 120-s, 60-s, and 30-s acquisition time (G600-G30). Images among different groups were subjectively evaluated using a 5-point Likert scale. Semi-quantitative evaluation was performed using standardized uptake value (SUV), myocardial to background activity ratio (M/B), signal to noise ratio (SNR), contrast to noise ratio (CNR), contrast ratio (CR), and coefficient of variation (CV). Myocardial viability analysis included indexes of Mismatch and Scar. G600 served as the reference.
Results: Subjective visual evaluation indicated a decline in the scores of image quality with shortening scan duration. All the G600, G300, and G120 images were clinically acceptable (score ≥ 3), and their image quality scores were 4.9 ± 0.3, 4.8 ± 0.4, and 4.5 ± 0.8, respectively (P > 0.05). Moreover, as the scan duration reduced, the semi-quantitative parameters M/B, SNR, CNR, and CR decreased, while SUV and CV increased, and significant difference was observed in G300-G30 groups when comparing to G600 group (P < 0.05). For myocardial viability analysis of left ventricular and coronary segments, the Mismatch and Scar values of G300-G30 groups were almost identical to G600 group (ICC: 0.968-1.0, P < 0.001).
Conclusion: Sufficient image quality for clinical diagnosis could be achieved at G120 for MMI using a total-body PET/CT scanner, while the image quality of G30 was acceptable for myocardial viability analysis.
期刊介绍:
EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.