Giovanny Aguilera-Durán, Stephanie Hernández-Castro, Brenda V. Loera-García, Alex Rivera-Vargas, J. M. Alvarez-Baltazar, Ma Del Refugio Cuevas-Flores, Antonio Romo-Mancillas
{"title":"Ursolic acid interaction with transcription factors BRAF, V600E, and V600K: a computational approach towards new potential melanoma treatments","authors":"Giovanny Aguilera-Durán, Stephanie Hernández-Castro, Brenda V. Loera-García, Alex Rivera-Vargas, J. M. Alvarez-Baltazar, Ma Del Refugio Cuevas-Flores, Antonio Romo-Mancillas","doi":"10.1007/s00894-024-06165-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Melanoma is one of the cancers with the highest mortality rate for its ability to metastasize. Several targets have undergone investigation for the development of drugs against this pathology. One of the main targets is the kinase BRAF (RAF, rapidly accelerated fibrosarcoma). The most common mutation in melanoma is BRAFV600E and has been reported in 50–90% of patients with melanoma. Due to the relevance of the BRAFV600E mutation, inhibitors to this kinase have been developed, vemurafenib-OMe and dabrafenib. Ursolic acid (UA) is a pentacyclic triterpene with a privileged structure, the pentacycle scaffold, which allows to have a broad variety of biological activity; the most studied is its anticancer capacity. In this work, we reported the interaction profile of vemurafenib-OMe, dabrafenib, and UA, to define whether UA has binding capacity to BRAFWT, BRAFV600E, and BRAFV600K. Homology modeling of BRAFWT, V600E, and V600K; molecular docking; and molecular dynamics simulations were carried out and interactions and residues relevant to the binding of the inhibitors were obtained. We found that UA, like the inhibitors, presents hydrogen bond interactions, and hydrophobic interactions of van der Waals, and π-stacking with I463, Q530, C532, and F583. The Δ<i>G</i> of ursolic acid in complex with BRAFV600K (− 63.31 kcal/mol) is comparable to the Δ<i>G</i> of the selective inhibitor dabrafenib (− 63.32 kcal/mol) in complex to BRAFV600K and presents a Δ<i>G</i> like vemurafenib-OMe with BRAFWT and V600E. With this information, ursolic acid could be considered as a lead compound for design cycles and to optimize the binding profile and the selectivity towards mutations for the development of new selective inhibitors for BRAFV600E and V600K to new potential melanoma treatments.</p><h3>Methods</h3><p>The homology modeling calculations were executed on the public servers I-TASSER and ROBETTA, followed by molecular docking calculations using AutoGrid 4.2.6, AutoDockGPU 1.5.3, and AutoDockTools 1.5.6. Molecular dynamics and metadynamics simulations were performed in the Desmond module of the academic version of the Schrödinger-Maestro 2020–4 program, utilizing the OPLS-2005 force field. Ligand–protein interactions were evaluated using Schrödinger-Maestro program, LigPlot + , and PLIP (protein–ligand interaction profiler). Finally, all of the protein figures presented in this article were made in the PyMOL program.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06165-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
Melanoma is one of the cancers with the highest mortality rate for its ability to metastasize. Several targets have undergone investigation for the development of drugs against this pathology. One of the main targets is the kinase BRAF (RAF, rapidly accelerated fibrosarcoma). The most common mutation in melanoma is BRAFV600E and has been reported in 50–90% of patients with melanoma. Due to the relevance of the BRAFV600E mutation, inhibitors to this kinase have been developed, vemurafenib-OMe and dabrafenib. Ursolic acid (UA) is a pentacyclic triterpene with a privileged structure, the pentacycle scaffold, which allows to have a broad variety of biological activity; the most studied is its anticancer capacity. In this work, we reported the interaction profile of vemurafenib-OMe, dabrafenib, and UA, to define whether UA has binding capacity to BRAFWT, BRAFV600E, and BRAFV600K. Homology modeling of BRAFWT, V600E, and V600K; molecular docking; and molecular dynamics simulations were carried out and interactions and residues relevant to the binding of the inhibitors were obtained. We found that UA, like the inhibitors, presents hydrogen bond interactions, and hydrophobic interactions of van der Waals, and π-stacking with I463, Q530, C532, and F583. The ΔG of ursolic acid in complex with BRAFV600K (− 63.31 kcal/mol) is comparable to the ΔG of the selective inhibitor dabrafenib (− 63.32 kcal/mol) in complex to BRAFV600K and presents a ΔG like vemurafenib-OMe with BRAFWT and V600E. With this information, ursolic acid could be considered as a lead compound for design cycles and to optimize the binding profile and the selectivity towards mutations for the development of new selective inhibitors for BRAFV600E and V600K to new potential melanoma treatments.
Methods
The homology modeling calculations were executed on the public servers I-TASSER and ROBETTA, followed by molecular docking calculations using AutoGrid 4.2.6, AutoDockGPU 1.5.3, and AutoDockTools 1.5.6. Molecular dynamics and metadynamics simulations were performed in the Desmond module of the academic version of the Schrödinger-Maestro 2020–4 program, utilizing the OPLS-2005 force field. Ligand–protein interactions were evaluated using Schrödinger-Maestro program, LigPlot + , and PLIP (protein–ligand interaction profiler). Finally, all of the protein figures presented in this article were made in the PyMOL program.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.