Jessica Braun, Paul Katzberger, Gregory A Landrum, Sereina Riniker
{"title":"Understanding and Quantifying Molecular Flexibility: Torsion Angular Bin Strings.","authors":"Jessica Braun, Paul Katzberger, Gregory A Landrum, Sereina Riniker","doi":"10.1021/acs.jcim.4c01513","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular flexibility is a commonly used, but not easily quantified term. It is at the core of understanding composition and size of a conformational ensemble and contributes to many molecular properties. For many computational workflows, it is necessary to reduce a conformational ensemble to meaningful representatives, however defining them and guaranteeing the ensemble's completeness is difficult. We introduce the concepts of torsion angular bin strings (TABS) as a discrete vector representation of a conformer's dihedral angles and the number of possible TABS (nTABS) as an estimation for the ensemble size of a molecule, respectively. Here, we show that nTABS corresponds to an upper limit for the size of the conformational space of small molecules and compare the classification of conformer ensembles by TABS with classifications by RMSD. Overcoming known drawbacks like the molecular size dependency and threshold picking of the RMSD measure, TABS is shown to meaningfully discretize the conformational space and hence allows e.g. for fast checks of the coverage of the conformational space. The current proof-of-concept implementation is based on the ETKDGv3 conformer generator as implemented in the RDKit and known torsion preferences extracted from small-molecule crystallographic data.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"7917-7924"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523068/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01513","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular flexibility is a commonly used, but not easily quantified term. It is at the core of understanding composition and size of a conformational ensemble and contributes to many molecular properties. For many computational workflows, it is necessary to reduce a conformational ensemble to meaningful representatives, however defining them and guaranteeing the ensemble's completeness is difficult. We introduce the concepts of torsion angular bin strings (TABS) as a discrete vector representation of a conformer's dihedral angles and the number of possible TABS (nTABS) as an estimation for the ensemble size of a molecule, respectively. Here, we show that nTABS corresponds to an upper limit for the size of the conformational space of small molecules and compare the classification of conformer ensembles by TABS with classifications by RMSD. Overcoming known drawbacks like the molecular size dependency and threshold picking of the RMSD measure, TABS is shown to meaningfully discretize the conformational space and hence allows e.g. for fast checks of the coverage of the conformational space. The current proof-of-concept implementation is based on the ETKDGv3 conformer generator as implemented in the RDKit and known torsion preferences extracted from small-molecule crystallographic data.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.