Varsha Thoppey Manoharan, Aly Abdelkareem, Gurveer Gill, Samuel Brown, Aaron Gillmor, Courtney Hall, Heewon Seo, Kiran Narta, Sean Grewal, Ngoc Ha Dang, Bo Young Ahn, Kata Osz, Xueqing Lun, Laura Mah, Franz Zemp, Douglas Mahoney, Donna L. Senger, Jennifer A. Chan, A. Sorana Morrissy
{"title":"Spatiotemporal modeling reveals high-resolution invasion states in glioblastoma","authors":"Varsha Thoppey Manoharan, Aly Abdelkareem, Gurveer Gill, Samuel Brown, Aaron Gillmor, Courtney Hall, Heewon Seo, Kiran Narta, Sean Grewal, Ngoc Ha Dang, Bo Young Ahn, Kata Osz, Xueqing Lun, Laura Mah, Franz Zemp, Douglas Mahoney, Donna L. Senger, Jennifer A. Chan, A. Sorana Morrissy","doi":"10.1186/s13059-024-03407-3","DOIUrl":null,"url":null,"abstract":"Diffuse invasion of glioblastoma cells through normal brain tissue is a key contributor to tumor aggressiveness, resistance to conventional therapies, and dismal prognosis in patients. A deeper understanding of how components of the tumor microenvironment (TME) contribute to overall tumor organization and to programs of invasion may reveal opportunities for improved therapeutic strategies. Towards this goal, we apply a novel computational workflow to a spatiotemporally profiled GBM xenograft cohort, leveraging the ability to distinguish human tumor from mouse TME to overcome previous limitations in the analysis of diffuse invasion. Our analytic approach, based on unsupervised deconvolution, performs reference-free discovery of cell types and cell activities within the complete GBM ecosystem. We present a comprehensive catalogue of 15 tumor cell programs set within the spatiotemporal context of 90 mouse brain and TME cell types, cell activities, and anatomic structures. Distinct tumor programs related to invasion align with routes of perivascular, white matter, and parenchymal invasion. Furthermore, sub-modules of genes serving as program network hubs are highly prognostic in GBM patients. The compendium of programs presented here provides a basis for rational targeting of tumor and/or TME components. We anticipate that our approach will facilitate an ecosystem-level understanding of the immediate and long-term consequences of such perturbations, including the identification of compensatory programs that will inform improved combinatorial therapies.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03407-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diffuse invasion of glioblastoma cells through normal brain tissue is a key contributor to tumor aggressiveness, resistance to conventional therapies, and dismal prognosis in patients. A deeper understanding of how components of the tumor microenvironment (TME) contribute to overall tumor organization and to programs of invasion may reveal opportunities for improved therapeutic strategies. Towards this goal, we apply a novel computational workflow to a spatiotemporally profiled GBM xenograft cohort, leveraging the ability to distinguish human tumor from mouse TME to overcome previous limitations in the analysis of diffuse invasion. Our analytic approach, based on unsupervised deconvolution, performs reference-free discovery of cell types and cell activities within the complete GBM ecosystem. We present a comprehensive catalogue of 15 tumor cell programs set within the spatiotemporal context of 90 mouse brain and TME cell types, cell activities, and anatomic structures. Distinct tumor programs related to invasion align with routes of perivascular, white matter, and parenchymal invasion. Furthermore, sub-modules of genes serving as program network hubs are highly prognostic in GBM patients. The compendium of programs presented here provides a basis for rational targeting of tumor and/or TME components. We anticipate that our approach will facilitate an ecosystem-level understanding of the immediate and long-term consequences of such perturbations, including the identification of compensatory programs that will inform improved combinatorial therapies.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.