Mining Generalized Multi-timescale Inconsistency for Detecting Deepfake Videos

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yang Yu, Rongrong Ni, Siyuan Yang, Yu Ni, Yao Zhao, Alex C. Kot
{"title":"Mining Generalized Multi-timescale Inconsistency for Detecting Deepfake Videos","authors":"Yang Yu, Rongrong Ni, Siyuan Yang, Yu Ni, Yao Zhao, Alex C. Kot","doi":"10.1007/s11263-024-02249-7","DOIUrl":null,"url":null,"abstract":"<p>Recent advancements in face forgery techniques have continuously evolved, leading to emergent security concerns in society. Existing detection methods have poor generalization ability due to the insufficient extraction of dynamic inconsistency cues on the one hand, and their inability to deal well with the gaps between forgery techniques on the other hand. To develop a new generalized framework that emphasizes extracting generalizable multi-timescale inconsistency cues. Firstly, we capture subtle dynamic inconsistency via magnifying the multipath dynamic inconsistency from the local-consecutive short-term temporal view. Secondly, the inter-group graph learning is conducted to establish the sufficient-interactive long-term temporal view for capturing dynamic inconsistency comprehensively. Finally, we design the domain alignment module to directly reduce the distribution gaps via simultaneously disarranging inter- and intra-domain feature distributions for obtaining a more generalized framework. Extensive experiments on six large-scale datasets and the designed generalization evaluation protocols show that our framework outperforms state-of-the-art deepfake video detection methods.\n</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"99 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02249-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in face forgery techniques have continuously evolved, leading to emergent security concerns in society. Existing detection methods have poor generalization ability due to the insufficient extraction of dynamic inconsistency cues on the one hand, and their inability to deal well with the gaps between forgery techniques on the other hand. To develop a new generalized framework that emphasizes extracting generalizable multi-timescale inconsistency cues. Firstly, we capture subtle dynamic inconsistency via magnifying the multipath dynamic inconsistency from the local-consecutive short-term temporal view. Secondly, the inter-group graph learning is conducted to establish the sufficient-interactive long-term temporal view for capturing dynamic inconsistency comprehensively. Finally, we design the domain alignment module to directly reduce the distribution gaps via simultaneously disarranging inter- and intra-domain feature distributions for obtaining a more generalized framework. Extensive experiments on six large-scale datasets and the designed generalization evaluation protocols show that our framework outperforms state-of-the-art deepfake video detection methods.

Abstract Image

挖掘广义多时间尺度不一致性以检测深度伪造视频
近年来,人脸伪造技术不断发展,引发了社会对安全问题的关注。现有的检测方法一方面由于动态不一致线索提取不足,另一方面由于无法很好地处理不同伪造技术之间的差距,因此通用能力较差。开发一种新的通用框架,强调提取可通用的多时间尺度不一致性线索。首先,我们从局部连续的短期时间视角出发,通过放大多路径动态不一致性来捕捉微妙的动态不一致性。其次,通过组间图学习,建立充分交互的长期时间视图,以全面捕捉动态不一致性。最后,我们设计了领域对齐模块,通过同时打乱领域间和领域内的特征分布来直接缩小分布差距,从而获得一个更具通用性的框架。在六个大规模数据集上进行的广泛实验和设计的泛化评估协议表明,我们的框架优于最先进的深度假视频检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信