{"title":"Quantum lozenge tiling and entanglement phase transition","authors":"Zhao Zhang, Israel Klich","doi":"10.22331/q-2024-10-10-1497","DOIUrl":null,"url":null,"abstract":"While volume violation of area law has been exhibited in several quantum spin chains, the construction of a corresponding ground state in higher dimensions, entangled in more than one direction, has been an open problem. Here we construct a 2D frustration-free Hamiltonian with maximal violation of the area law. We do so by building a quantum model of random surfaces with color degree of freedom that can be viewed as a collection of colored Dyck paths. The Hamiltonian may be viewed as a 2D generalization of the Fredkin spin chain. It relates all the colored random surface configurations subject to a Dirichlet boundary condition and hard wall constraint from below to one another, and the ground state is therefore a superposition of all such classical states and non-degenerate. Its entanglement entropy between subsystems undergoes a quantum phase transition as the deformation parameter is tuned. The area- and volume-law phases are similar to the one-dimensional model, while the critical point scales with the linear size of the system $L$ as $L\\log L$. Further it is conjectured that similar models with entanglement phase transitions can be built in higher dimensions with even softer area law violations at the critical point.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"65 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-10-10-1497","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
While volume violation of area law has been exhibited in several quantum spin chains, the construction of a corresponding ground state in higher dimensions, entangled in more than one direction, has been an open problem. Here we construct a 2D frustration-free Hamiltonian with maximal violation of the area law. We do so by building a quantum model of random surfaces with color degree of freedom that can be viewed as a collection of colored Dyck paths. The Hamiltonian may be viewed as a 2D generalization of the Fredkin spin chain. It relates all the colored random surface configurations subject to a Dirichlet boundary condition and hard wall constraint from below to one another, and the ground state is therefore a superposition of all such classical states and non-degenerate. Its entanglement entropy between subsystems undergoes a quantum phase transition as the deformation parameter is tuned. The area- and volume-law phases are similar to the one-dimensional model, while the critical point scales with the linear size of the system $L$ as $L\log L$. Further it is conjectured that similar models with entanglement phase transitions can be built in higher dimensions with even softer area law violations at the critical point.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.