Efficient error-correcting codes for the HQC post-quantum cryptosystem

IF 1.4 2区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Carlos Aguilar-Melchor, Nicolas Aragon, Jean-Christophe Deneuville, Philippe Gaborit, Jérôme Lacan, Gilles Zémor
{"title":"Efficient error-correcting codes for the HQC post-quantum cryptosystem","authors":"Carlos Aguilar-Melchor, Nicolas Aragon, Jean-Christophe Deneuville, Philippe Gaborit, Jérôme Lacan, Gilles Zémor","doi":"10.1007/s10623-024-01507-6","DOIUrl":null,"url":null,"abstract":"<p>The HQC post-quantum cryptosystem enables two parties to share noisy versions of a common secret binary string, and an error-correcting code is required to deal with the mismatch between both versions. This code is required to deal with binary symmetric channels with as large a transition parameter as possible, while guaranteeing, for cryptographic reasons, a decoding error probability of provably not more than 2<sup>-128</sup>. This requirement is non-standard for digital communications, and modern coding techniques are not amenable to this setting. This paper explains how this issue is addressed in the last version of HQC: precisely, we introduce a coding scheme that consists of concatenating a Reed–Solomon code with the tensor product of a Reed–Muller code and a repetition code. We analyze its behavior in detail and show that it significantly improves upon the previous proposition for HQC, which consisted of tensoring a BCH and a repetition code. As additional results, we also provide a better approximation of the weight distribution for HQC error vectors, and we remark that the size of the exchanged secret in HQC can be reduced to match the protocol security which also significantly improves performance.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"46 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01507-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The HQC post-quantum cryptosystem enables two parties to share noisy versions of a common secret binary string, and an error-correcting code is required to deal with the mismatch between both versions. This code is required to deal with binary symmetric channels with as large a transition parameter as possible, while guaranteeing, for cryptographic reasons, a decoding error probability of provably not more than 2-128. This requirement is non-standard for digital communications, and modern coding techniques are not amenable to this setting. This paper explains how this issue is addressed in the last version of HQC: precisely, we introduce a coding scheme that consists of concatenating a Reed–Solomon code with the tensor product of a Reed–Muller code and a repetition code. We analyze its behavior in detail and show that it significantly improves upon the previous proposition for HQC, which consisted of tensoring a BCH and a repetition code. As additional results, we also provide a better approximation of the weight distribution for HQC error vectors, and we remark that the size of the exchanged secret in HQC can be reduced to match the protocol security which also significantly improves performance.

Abstract Image

HQC 后量子密码系统的高效纠错码
HQC 后量子密码系统使双方能够共享一个共同秘密二进制字符串的噪声版本,并且需要一个纠错码来处理两个版本之间的不匹配。这种纠错码需要处理具有尽可能大过渡参数的二进制对称信道,同时出于密码学原因,保证解码错误概率不超过 2-128。这一要求对于数字通信来说是非标准的,现代编码技术也无法满足这一要求。本文解释了 HQC 最后一个版本是如何解决这一问题的:确切地说,我们引入了一种编码方案,它由里德-所罗门码与里德-穆勒码和重复码的张量乘积组成。我们详细分析了它的行为,并证明它大大改进了之前的 HQC 提议,后者包括对 BCH 和重复码进行张量乘积。作为附加结果,我们还为 HQC 错误向量的权重分布提供了一个更好的近似值,并指出 HQC 中交换秘密的大小可以减小以匹配协议安全性,这也大大提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Designs, Codes and Cryptography
Designs, Codes and Cryptography 工程技术-计算机:理论方法
CiteScore
2.80
自引率
12.50%
发文量
157
审稿时长
16.5 months
期刊介绍: Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines. The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome. The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas. Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信