{"title":"Revisiting the LQR Problem of Singular Systems","authors":"Komeil Nosrati;Juri Belikov;Aleksei Tepljakov;Eduard Petlenkov","doi":"10.1109/JAS.2024.124665","DOIUrl":null,"url":null,"abstract":"In the development of linear quadratic regulator (LQR) algorithms, the Riccati equation approach offers two important characteristics —it is recursive and readily meets the existence condition. However, these attributes are applicable only to transformed singular systems, and the efficiency of the regulator may be undermined if constraints are violated in nonsingular versions. To address this gap, we introduce a direct approach to the LQR problem for linear singular systems, avoiding the need for any transformations and eliminating the need for regularity assumptions. To achieve this goal, we begin by formulating a quadratic cost function to derive the LQR algorithm through a penalized and weighted regression framework and then connect it to a constrained minimization problem using the Bellman's criterion. Then, we employ a dynamic programming strategy in a backward approach within a finite horizon to develop an LQR algorithm for the original system. To accomplish this, we address the stability and convergence analysis under the reachability and observability assumptions of a hypothetical system constructed by the pencil of augmented matrices and connected using the Hamiltonian diagonalization technique.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 11","pages":"2236-2252"},"PeriodicalIF":15.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10707653/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the development of linear quadratic regulator (LQR) algorithms, the Riccati equation approach offers two important characteristics —it is recursive and readily meets the existence condition. However, these attributes are applicable only to transformed singular systems, and the efficiency of the regulator may be undermined if constraints are violated in nonsingular versions. To address this gap, we introduce a direct approach to the LQR problem for linear singular systems, avoiding the need for any transformations and eliminating the need for regularity assumptions. To achieve this goal, we begin by formulating a quadratic cost function to derive the LQR algorithm through a penalized and weighted regression framework and then connect it to a constrained minimization problem using the Bellman's criterion. Then, we employ a dynamic programming strategy in a backward approach within a finite horizon to develop an LQR algorithm for the original system. To accomplish this, we address the stability and convergence analysis under the reachability and observability assumptions of a hypothetical system constructed by the pencil of augmented matrices and connected using the Hamiltonian diagonalization technique.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.