{"title":"Two-Stage Approach for Targeted Knowledge Transfer in Self-Knowledge Distillation","authors":"Zimo Yin;Jian Pu;Yijie Zhou;Xiangyang Xue","doi":"10.1109/JAS.2024.124629","DOIUrl":null,"url":null,"abstract":"Knowledge distillation (KD) enhances student network generalization by transferring dark knowledge from a complex teacher network. To optimize computational expenditure and memory utilization, self-knowledge distillation (SKD) extracts dark knowledge from the model itself rather than an external teacher network. However, previous SKD methods performed distillation indiscriminately on full datasets, overlooking the analysis of representative samples. In this work, we present a novel two-stage approach to providing targeted knowledge on specific samples, named two-stage approach self-knowledge distillation (TOAST). We first soften the hard targets using class medoids generated based on logit vectors per class. Then, we iteratively distill the under-trained data with past predictions of half the batch size. The two-stage knowledge is linearly combined, efficiently enhancing model performance. Extensive experiments conducted on five backbone architectures show our method is model-agnostic and achieves the best generalization performance. Besides, TOAST is strongly compatible with existing augmentation-based regularization methods. Our method also obtains a speedup of up to 2.95x compared with a recent state-of-the-art method.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 11","pages":"2270-2283"},"PeriodicalIF":15.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10707699/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge distillation (KD) enhances student network generalization by transferring dark knowledge from a complex teacher network. To optimize computational expenditure and memory utilization, self-knowledge distillation (SKD) extracts dark knowledge from the model itself rather than an external teacher network. However, previous SKD methods performed distillation indiscriminately on full datasets, overlooking the analysis of representative samples. In this work, we present a novel two-stage approach to providing targeted knowledge on specific samples, named two-stage approach self-knowledge distillation (TOAST). We first soften the hard targets using class medoids generated based on logit vectors per class. Then, we iteratively distill the under-trained data with past predictions of half the batch size. The two-stage knowledge is linearly combined, efficiently enhancing model performance. Extensive experiments conducted on five backbone architectures show our method is model-agnostic and achieves the best generalization performance. Besides, TOAST is strongly compatible with existing augmentation-based regularization methods. Our method also obtains a speedup of up to 2.95x compared with a recent state-of-the-art method.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.