Nphos: Database and Predictor of Protein N-phosphorylation.

Ming-Xiao Zhao, Ruo-Fan Ding, Qiang Chen, Junhua Meng, Fulai Li, Songsen Fu, Biling Huang, Yan Liu, Zhi-Liang Ji, Yufen Zhao
{"title":"Nphos: Database and Predictor of Protein N-phosphorylation.","authors":"Ming-Xiao Zhao, Ruo-Fan Ding, Qiang Chen, Junhua Meng, Fulai Li, Songsen Fu, Biling Huang, Yan Liu, Zhi-Liang Ji, Yufen Zhao","doi":"10.1093/gpbjnl/qzae032","DOIUrl":null,"url":null,"abstract":"<p><p>Protein N-phosphorylation is widely present in nature and participates in various biological processes. However, current knowledge on N-phosphorylation is extremely limited compared to that on O-phosphorylation. In this study, we collected 11,710 experimentally verified N-phosphosites of 7344 proteins from 39 species and subsequently constructed the database Nphos to share up-to-date information on protein N-phosphorylation. Upon these substantial data, we characterized the sequential and structural features of protein N-phosphorylation. Moreover, after comparing hundreds of learning models, we chose and optimized gradient boosting decision tree (GBDT) models to predict three types of human N-phosphorylation, achieving mean area under the receiver operating characteristic curve (AUC) values of 90.56%, 91.24%, and 92.01% for pHis, pLys, and pArg, respectively. Meanwhile, we discovered 488,825 distinct N-phosphosites in the human proteome. The models were also deployed in Nphos for interactive N-phosphosite prediction. In summary, this work provides new insights and points for both flexible and focused investigations of N-phosphorylation. It will also facilitate a deeper and more systematic understanding of protein N-phosphorylation modification by providing a data and technical foundation. Nphos is freely available at http://www.bio-add.org/Nphos/ and http://ppodd.org.cn/Nphos/.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzae032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Protein N-phosphorylation is widely present in nature and participates in various biological processes. However, current knowledge on N-phosphorylation is extremely limited compared to that on O-phosphorylation. In this study, we collected 11,710 experimentally verified N-phosphosites of 7344 proteins from 39 species and subsequently constructed the database Nphos to share up-to-date information on protein N-phosphorylation. Upon these substantial data, we characterized the sequential and structural features of protein N-phosphorylation. Moreover, after comparing hundreds of learning models, we chose and optimized gradient boosting decision tree (GBDT) models to predict three types of human N-phosphorylation, achieving mean area under the receiver operating characteristic curve (AUC) values of 90.56%, 91.24%, and 92.01% for pHis, pLys, and pArg, respectively. Meanwhile, we discovered 488,825 distinct N-phosphosites in the human proteome. The models were also deployed in Nphos for interactive N-phosphosite prediction. In summary, this work provides new insights and points for both flexible and focused investigations of N-phosphorylation. It will also facilitate a deeper and more systematic understanding of protein N-phosphorylation modification by providing a data and technical foundation. Nphos is freely available at http://www.bio-add.org/Nphos/ and http://ppodd.org.cn/Nphos/.

Nphos:蛋白质 N-磷酸化数据库和预测器。
蛋白质 N-磷酸化广泛存在于自然界中,并参与各种生物过程。然而,与 O 型磷酸化相比,目前有关 N 型磷酸化的知识极为有限。在这项研究中,我们从 39 个物种的 7344 个蛋白质中收集了 11,710 个经实验验证的 N-磷酸化位点,随后构建了 Nphos 数据库,以分享蛋白质 N-磷酸化的最新信息。在这些大量数据的基础上,我们描述了蛋白质 N-磷酸化的顺序和结构特征。此外,在比较了数百个学习模型后,我们选择并优化了梯度提升决策树(GBDT)模型来预测人类的三种N-磷酸化类型,pHis、pLys和pArg的接收操作特征曲线下的平均面积(AUC)值分别为90.56%、91.24%和92.01%。同时,我们在人类蛋白质组中发现了 488,825 个不同的 N-磷酸位点。这些模型还被部署在 Nphos 中,用于交互式 N-磷酸复合预测。总之,这项工作为灵活而有针对性地研究 N-磷酸化提供了新的见解和要点。它还将通过提供数据和技术基础,促进对蛋白质 N-磷酸化修饰更深入、更系统的了解。Nphos 可在 http://www.bio-add.org/Nphos/ 和 http://ppodd.org.cn/Nphos/ 免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信