{"title":"Enhancing Variant Calling in Whole-Exome Sequencing Data Using Population-Matched Reference Genomes.","authors":"Shuming Guo, Zhuo Huang, Yanming Zhang, Yukun He, Xiangju Chen, Wenjuan Wang, Lansheng Li, Yu Kang, Zhancheng Gao, Jun Yu, Zhenglin Du, Yanan Chu","doi":"10.1093/gpbjnl/qzae070","DOIUrl":null,"url":null,"abstract":"<p><p>Whole-exome sequencing (WES) data are frequently used for cancer diagnosis and genome-wide association studies (GWAS), based on high-coverage read mapping, informative variant calling, and high-quality reference genomes. The center position of the currently used genome assembly, GRCh38, is now challenged by two newly published telomere-to-telomere (T2T) genomes, T2T-CHM13 and T2T-YAO, and it becomes urgent to have a comparative study to test population specificity using the three reference genomes based on real case WES data. Here we report our analysis along this line for 19 tumor samples collected from Chinese patients. The primary comparison of the exon regions among the three references reveals that the sequences in up to ∼ 1% target regions in T2T-YAO are widely diversified from GRCh38 and may lead to off-target in sequence capture. However, T2T-YAO still outperforms GRCh38 genomes by obtaining 7.41% more mapped reads. Due to more reliable read-mapping and closer phylogenetic relationship with the samples than GRCh38, T2T-YAO reduces half of variant calls of clinical significance which are mostly benign, while maintaining sensitivity in identifying pathogenic variants. T2T-YAO also outperforms T2T-CHM13 in reducing calls of Chinese-specific variants. Our findings highlight the critical need for employing population-specific reference genomes in genomic analysis to ensure accurate variant analysis and the significant benefits of tailoring these approaches to the unique genetic backgrounds of each ethnic group.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzae070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Whole-exome sequencing (WES) data are frequently used for cancer diagnosis and genome-wide association studies (GWAS), based on high-coverage read mapping, informative variant calling, and high-quality reference genomes. The center position of the currently used genome assembly, GRCh38, is now challenged by two newly published telomere-to-telomere (T2T) genomes, T2T-CHM13 and T2T-YAO, and it becomes urgent to have a comparative study to test population specificity using the three reference genomes based on real case WES data. Here we report our analysis along this line for 19 tumor samples collected from Chinese patients. The primary comparison of the exon regions among the three references reveals that the sequences in up to ∼ 1% target regions in T2T-YAO are widely diversified from GRCh38 and may lead to off-target in sequence capture. However, T2T-YAO still outperforms GRCh38 genomes by obtaining 7.41% more mapped reads. Due to more reliable read-mapping and closer phylogenetic relationship with the samples than GRCh38, T2T-YAO reduces half of variant calls of clinical significance which are mostly benign, while maintaining sensitivity in identifying pathogenic variants. T2T-YAO also outperforms T2T-CHM13 in reducing calls of Chinese-specific variants. Our findings highlight the critical need for employing population-specific reference genomes in genomic analysis to ensure accurate variant analysis and the significant benefits of tailoring these approaches to the unique genetic backgrounds of each ethnic group.