Joseph Hastings, Donghyung Lee, Michael J O'Connell
{"title":"Batch-effect correction in single-cell RNA sequencing data using JIVE.","authors":"Joseph Hastings, Donghyung Lee, Michael J O'Connell","doi":"10.1093/bioadv/vbae134","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>In single-cell RNA sequencing analysis, addressing batch effects-technical artifacts stemming from factors such as varying sequencing technologies, equipment, and capture times-is crucial. These factors can cause unwanted variation and obfuscate the underlying biological signal of interest. The joint and individual variation explained (JIVE) method can be used to extract shared biological patterns from multi-source sequencing data while adjusting for individual non-biological variations (i.e. batch effect). However, its current implementation is originally designed for bulk sequencing data, making it computationally infeasible for large-scale single-cell sequencing datasets.</p><p><strong>Results: </strong>In this study, we enhance JIVE for large-scale single-cell data by boosting its computational efficiency. Additionally, we introduce a novel application of JIVE for batch-effect correction on multiple single-cell sequencing datasets. Our enhanced method aims to decompose single-cell sequencing datasets into a joint structure capturing the true biological variability and individual structures, which capture technical variability within each batch. This joint structure is then suitable for use in downstream analyses. We benchmarked the results against four popular tools, Seurat v5, Harmony, LIGER, and Combat-seq, which were developed for this purpose. JIVE performed best in terms of preserving cell-type effects and in scenarios in which the batch sizes are balanced.</p><p><strong>Availability and implementation: </strong>The JIVE implementation used for this analysis can be found at https://github.com/oconnell-statistics-lab/scJIVE.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae134"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461915/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: In single-cell RNA sequencing analysis, addressing batch effects-technical artifacts stemming from factors such as varying sequencing technologies, equipment, and capture times-is crucial. These factors can cause unwanted variation and obfuscate the underlying biological signal of interest. The joint and individual variation explained (JIVE) method can be used to extract shared biological patterns from multi-source sequencing data while adjusting for individual non-biological variations (i.e. batch effect). However, its current implementation is originally designed for bulk sequencing data, making it computationally infeasible for large-scale single-cell sequencing datasets.
Results: In this study, we enhance JIVE for large-scale single-cell data by boosting its computational efficiency. Additionally, we introduce a novel application of JIVE for batch-effect correction on multiple single-cell sequencing datasets. Our enhanced method aims to decompose single-cell sequencing datasets into a joint structure capturing the true biological variability and individual structures, which capture technical variability within each batch. This joint structure is then suitable for use in downstream analyses. We benchmarked the results against four popular tools, Seurat v5, Harmony, LIGER, and Combat-seq, which were developed for this purpose. JIVE performed best in terms of preserving cell-type effects and in scenarios in which the batch sizes are balanced.
Availability and implementation: The JIVE implementation used for this analysis can be found at https://github.com/oconnell-statistics-lab/scJIVE.