A Regularized Conditional GAN for Posterior Sampling in Image Recovery Problems.

Advances in neural information processing systems Pub Date : 2023-12-01 Epub Date: 2024-05-30
Matthew C Bendel, Rizwan Ahmad, Philip Schniter
{"title":"A Regularized Conditional GAN for Posterior Sampling in Image Recovery Problems.","authors":"Matthew C Bendel, Rizwan Ahmad, Philip Schniter","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In image recovery problems, one seeks to infer an image from distorted, incomplete, and/or noise-corrupted measurements. Such problems arise in magnetic resonance imaging (MRI), computed tomography, deblurring, super-resolution, inpainting, phase retrieval, image-to-image translation, and other applications. Given a training set of signal/measurement pairs, we seek to do more than just produce one good image estimate. Rather, we aim to rapidly and accurately sample from the posterior distribution. To do this, we propose a regularized conditional Wasserstein GAN that generates dozens of high-quality posterior samples per second. Our regularization comprises an <math> <msub><mrow><mo>ℓ</mo></mrow> <mrow><mn>1</mn></mrow> </msub> </math> penalty and an adaptively weighted standard-deviation reward. Using quantitative evaluation metrics like conditional Fréchet inception distance, we demonstrate that our method produces state-of-the-art posterior samples in both multicoil MRI and large-scale inpainting applications. The code for our model can be found here: https://github.com/matt-bendel/rcGAN.</p>","PeriodicalId":72099,"journal":{"name":"Advances in neural information processing systems","volume":"36 ","pages":"68673-68684"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460768/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neural information processing systems","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In image recovery problems, one seeks to infer an image from distorted, incomplete, and/or noise-corrupted measurements. Such problems arise in magnetic resonance imaging (MRI), computed tomography, deblurring, super-resolution, inpainting, phase retrieval, image-to-image translation, and other applications. Given a training set of signal/measurement pairs, we seek to do more than just produce one good image estimate. Rather, we aim to rapidly and accurately sample from the posterior distribution. To do this, we propose a regularized conditional Wasserstein GAN that generates dozens of high-quality posterior samples per second. Our regularization comprises an 1 penalty and an adaptively weighted standard-deviation reward. Using quantitative evaluation metrics like conditional Fréchet inception distance, we demonstrate that our method produces state-of-the-art posterior samples in both multicoil MRI and large-scale inpainting applications. The code for our model can be found here: https://github.com/matt-bendel/rcGAN.

图像复原问题中用于后验采样的正则化条件 GAN。
在图像复原问题中,人们试图从扭曲、不完整和/或噪声干扰的测量结果中推断图像。这类问题出现在磁共振成像(MRI)、计算机断层扫描、去毛刺、超分辨率、涂色、相位检索、图像到图像转换以及其他应用中。给定一组信号/测量对的训练集,我们要做的不仅仅是生成一个良好的图像估计值。相反,我们的目标是从后验分布中快速、准确地采样。为此,我们提出了一种正则化条件 Wasserstein GAN,每秒可生成数十个高质量的后验样本。我们的正则化包括 ℓ 1 惩罚和自适应加权标准差奖励。通过使用条件弗雷谢特起始距离等定量评估指标,我们证明了我们的方法能在多oil MRI 和大规模 Inpainting 应用中生成一流的后验样本。我们模型的代码可在这里找到:https://github.com/matt-bendel/rcGAN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信