A Fast Algorithm for All-Pairs-Shortest-Paths Suitable for Neural Networks

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zeyu Jing;Markus Meister
{"title":"A Fast Algorithm for All-Pairs-Shortest-Paths Suitable for Neural Networks","authors":"Zeyu Jing;Markus Meister","doi":"10.1162/neco_a_01716","DOIUrl":null,"url":null,"abstract":"Given a directed graph of nodes and edges connecting them, a common problem is to find the shortest path between any two nodes. Here we show that the shortest path distances can be found by a simple matrix inversion: if the edges are given by the adjacency matrix Aij, then with a suitably small value of γ, the shortest path distances are Dij=ceil(logγ[(I-γA)-1]ij).We derive several graph-theoretic bounds on the value of γ and explore its useful range with numerics on different graph types. Even when the distance function is not globally accurate across the entire graph, it still works locally to instruct pursuit of the shortest path. In this mode, it also extends to weighted graphs with positive edge weights. For a wide range of dense graphs, this distance function is computationally faster than the best available alternative. Finally, we show that this method leads naturally to a neural network solution of the all-pairs-shortest-path problem.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"36 12","pages":"2710-2733"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10810337/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Given a directed graph of nodes and edges connecting them, a common problem is to find the shortest path between any two nodes. Here we show that the shortest path distances can be found by a simple matrix inversion: if the edges are given by the adjacency matrix Aij, then with a suitably small value of γ, the shortest path distances are Dij=ceil(logγ[(I-γA)-1]ij).We derive several graph-theoretic bounds on the value of γ and explore its useful range with numerics on different graph types. Even when the distance function is not globally accurate across the entire graph, it still works locally to instruct pursuit of the shortest path. In this mode, it also extends to weighted graphs with positive edge weights. For a wide range of dense graphs, this distance function is computationally faster than the best available alternative. Finally, we show that this method leads naturally to a neural network solution of the all-pairs-shortest-path problem.
适合神经网络的全对最短路径快速算法
给定一个由节点和连接节点的边组成的有向图,常见的问题是找出任意两个节点之间的最短路径。在这里,我们展示了最短路径距离可以通过简单的矩阵反转找到:如果边是由邻接矩阵 Aij 给出的,那么只要γ 的值适当小,最短路径距离就是 Dij=ceil(logγ[(I-γA)-1]ij)。即使距离函数在整个图中不是全局精确的,它仍能在局部发挥作用,指导追求最短路径。在这种模式下,它还能扩展到具有正边权重的加权图。对于各种密集图,该距离函数的计算速度都快于现有的最佳替代方法。最后,我们展示了这种方法自然而然地带来了全对最短路径问题的神经网络解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信