Making the most of big qualitative datasets: a living systematic review of analysis methods.

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Frontiers in Big Data Pub Date : 2024-09-25 eCollection Date: 2024-01-01 DOI:10.3389/fdata.2024.1455399
Abinaya Chandrasekar, Sigrún Eyrúnardóttir Clark, Sam Martin, Samantha Vanderslott, Elaine C Flores, David Aceituno, Phoebe Barnett, Cecilia Vindrola-Padros, Norha Vera San Juan
{"title":"Making the most of big qualitative datasets: a living systematic review of analysis methods.","authors":"Abinaya Chandrasekar, Sigrún Eyrúnardóttir Clark, Sam Martin, Samantha Vanderslott, Elaine C Flores, David Aceituno, Phoebe Barnett, Cecilia Vindrola-Padros, Norha Vera San Juan","doi":"10.3389/fdata.2024.1455399","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Qualitative data provides deep insights into an individual's behaviors and beliefs, and the contextual factors that may shape these. Big qualitative data analysis is an emerging field that aims to identify trends and patterns in large qualitative datasets. The purpose of this review was to identify the methods used to analyse large bodies of qualitative data, their cited strengths and limitations and comparisons between manual and digital analysis approaches.</p><p><strong>Methods: </strong>A multifaceted approach has been taken to develop the review relying on academic, gray and media-based literature, using approaches such as iterative analysis, frequency analysis, text network analysis and team discussion.</p><p><strong>Results: </strong>The review identified 520 articles that detailed analysis approaches of big qualitative data. From these publications a diverse range of methods and software used for analysis were identified, with thematic analysis and basic software being most common. Studies were most commonly conducted in high-income countries, and the most common data sources were open-ended survey responses, interview transcripts, and first-person narratives.</p><p><strong>Discussion: </strong>We identified an emerging trend to expand the sources of qualitative data (e.g., using social media data, images, or videos), and develop new methods and software for analysis. As the qualitative analysis field may continue to change, it will be necessary to conduct further research to compare the utility of different big qualitative analysis methods and to develop standardized guidelines to raise awareness and support researchers in the use of more novel approaches for big qualitative analysis.</p><p><strong>Systematic review registration: </strong>https://osf.io/hbvsy/?view_only=.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461344/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2024.1455399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Qualitative data provides deep insights into an individual's behaviors and beliefs, and the contextual factors that may shape these. Big qualitative data analysis is an emerging field that aims to identify trends and patterns in large qualitative datasets. The purpose of this review was to identify the methods used to analyse large bodies of qualitative data, their cited strengths and limitations and comparisons between manual and digital analysis approaches.

Methods: A multifaceted approach has been taken to develop the review relying on academic, gray and media-based literature, using approaches such as iterative analysis, frequency analysis, text network analysis and team discussion.

Results: The review identified 520 articles that detailed analysis approaches of big qualitative data. From these publications a diverse range of methods and software used for analysis were identified, with thematic analysis and basic software being most common. Studies were most commonly conducted in high-income countries, and the most common data sources were open-ended survey responses, interview transcripts, and first-person narratives.

Discussion: We identified an emerging trend to expand the sources of qualitative data (e.g., using social media data, images, or videos), and develop new methods and software for analysis. As the qualitative analysis field may continue to change, it will be necessary to conduct further research to compare the utility of different big qualitative analysis methods and to develop standardized guidelines to raise awareness and support researchers in the use of more novel approaches for big qualitative analysis.

Systematic review registration: https://osf.io/hbvsy/?view_only=.

充分利用大型定性数据集:对分析方法的系统回顾。
简介定性数据能够深入揭示个人的行为和信念,以及可能影响这些行为和信念的背景因素。大型定性数据分析是一个新兴领域,旨在识别大型定性数据集中的趋势和模式。本综述旨在确定用于分析大量定性数据的方法、这些方法的优势和局限性,以及人工分析方法和数字分析方法之间的比较:方法:采用多方面的方法,依靠学术、灰色和基于媒体的文献,使用迭代分析、频率分析、文本网络分析和团队讨论等方法进行综述:结果:综述确定了 520 篇详细介绍大型定性数据分析方法的文章。从这些出版物中发现了各种不同的分析方法和软件,其中主题分析和基本软件最为常见。研究通常在高收入国家进行,最常见的数据来源是开放式调查回复、访谈记录和第一人称叙述:我们发现了一种新趋势,即扩大定性数据的来源(如使用社交媒体数据、图像或视频),并开发新的分析方法和软件。由于定性分析领域可能会继续发生变化,因此有必要开展进一步的研究,比较不同的大样本定性分析方法的效用,并制定标准化指南,以提高研究人员的认识,支持他们使用更多新颖的方法进行大样本定性分析。系统综述注册:https://osf.io/hbvsy/?view_only=。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信