AI-based antibody discovery platform identifies novel, diverse, and pharmacologically active therapeutic antibodies against multiple SARS-CoV-2 strains.

Q2 Medicine
Antibody Therapeutics Pub Date : 2024-09-26 eCollection Date: 2024-10-01 DOI:10.1093/abt/tbae025
Cristina Moldovan Loomis, Thomas Lahlali, Danielle Van Citters, Megan Sprague, Gregory Neveu, Laurence Somody, Christine C Siska, Derrick Deming, Andrew J Asakawa, Tileli Amimeur, Jeremy M Shaver, Caroline Carbonelle, Randal R Ketchem, Antoine Alam, Rutilio H Clark
{"title":"AI-based antibody discovery platform identifies novel, diverse, and pharmacologically active therapeutic antibodies against multiple SARS-CoV-2 strains.","authors":"Cristina Moldovan Loomis, Thomas Lahlali, Danielle Van Citters, Megan Sprague, Gregory Neveu, Laurence Somody, Christine C Siska, Derrick Deming, Andrew J Asakawa, Tileli Amimeur, Jeremy M Shaver, Caroline Carbonelle, Randal R Ketchem, Antoine Alam, Rutilio H Clark","doi":"10.1093/abt/tbae025","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We are entering a new era of antibody discovery and optimization where machine learning (ML) processes will become indispensable for the design and development of therapeutics.</p><p><strong>Methods: </strong>We have constructed a Humanoid Antibody Library for the discovery of therapeutics that is an initial step towards leveraging the utility of artificial intelligence and ML. We describe how we began our validation of the library for antibody discovery by isolating antibodies against a target of pandemic concern, SARS-CoV-2. The two main antibody quality aspects that we focused on were functional and biophysical characterization.</p><p><strong>Results: </strong>The applicability of our platform for effective therapeutic antibody discovery is demonstrated here with the identification of a panel of human monoclonal antibodies that are novel, diverse, and pharmacologically active.</p><p><strong>Conclusions: </strong>These first-generation antibodies, without the need for affinity maturation, exhibited neutralization of SARS-CoV-2 viral infectivity across multiple strains and indicated high developability potential.</p>","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456866/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibody Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/abt/tbae025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: We are entering a new era of antibody discovery and optimization where machine learning (ML) processes will become indispensable for the design and development of therapeutics.

Methods: We have constructed a Humanoid Antibody Library for the discovery of therapeutics that is an initial step towards leveraging the utility of artificial intelligence and ML. We describe how we began our validation of the library for antibody discovery by isolating antibodies against a target of pandemic concern, SARS-CoV-2. The two main antibody quality aspects that we focused on were functional and biophysical characterization.

Results: The applicability of our platform for effective therapeutic antibody discovery is demonstrated here with the identification of a panel of human monoclonal antibodies that are novel, diverse, and pharmacologically active.

Conclusions: These first-generation antibodies, without the need for affinity maturation, exhibited neutralization of SARS-CoV-2 viral infectivity across multiple strains and indicated high developability potential.

基于人工智能的抗体发现平台确定了针对多种 SARS-CoV-2 株系的新型、多样化和具有药理活性的治疗性抗体。
背景:我们正在进入抗体发现和优化的新时代:我们正在进入一个抗体发现和优化的新时代,在这个时代,机器学习(ML)过程将成为治疗药物设计和开发不可或缺的一部分:方法:我们构建了一个用于发现治疗药物的仿人抗体库,这是利用人工智能和 ML 的第一步。我们将介绍如何通过分离针对大流行病关注目标--SARS-CoV-2--的抗体来开始验证抗体库的发现。我们关注的抗体质量的两个主要方面是功能和生物物理特征:结果:我们的平台适用于有效的治疗性抗体发现,我们在这里鉴定出了一组具有新颖性、多样性和药理活性的人类单克隆抗体:结论:这些第一代抗体无需进行亲和力成熟,就能中和多种毒株的 SARS-CoV-2 病毒感染性,具有很高的开发潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Antibody Therapeutics
Antibody Therapeutics Medicine-Immunology and Allergy
CiteScore
8.70
自引率
0.00%
发文量
30
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信