Elevated plasma and CSF neurofilament light chain concentrations are stabilized in response to mutant huntingtin lowering in the brains of Huntington's disease mice.

IF 10.8 1区 医学 Q1 NEUROSCIENCES
Nicholas S Caron, Lauren M Byrne, Fanny L Lemarié, Jeffrey N Bone, Amirah E-E Aly, Seunghyun Ko, Christine Anderson, Lorenzo L Casal, Austin M Hill, David J Hawellek, Peter McColgan, Edward J Wild, Blair R Leavitt, Michael R Hayden
{"title":"Elevated plasma and CSF neurofilament light chain concentrations are stabilized in response to mutant huntingtin lowering in the brains of Huntington's disease mice.","authors":"Nicholas S Caron, Lauren M Byrne, Fanny L Lemarié, Jeffrey N Bone, Amirah E-E Aly, Seunghyun Ko, Christine Anderson, Lorenzo L Casal, Austin M Hill, David J Hawellek, Peter McColgan, Edward J Wild, Blair R Leavitt, Michael R Hayden","doi":"10.1186/s40035-024-00443-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Therapeutic approaches aimed at lowering toxic mutant huntingtin (mHTT) levels in the brain can reverse disease phenotypes in animal models of Huntington's disease (HD) and are currently being evaluated in clinical trials. Sensitive and dynamic response biomarkers are needed to assess the efficacy of such candidate therapies. Neurofilament light chain (NfL) is a biomarker of neurodegeneration that increases in cerebrospinal fluid (CSF) and blood with progression of HD. However, it remains unknown whether NfL in biofluids could serve as a response biomarker for assessing the efficacy of disease-modifying therapies for HD.</p><p><strong>Methods: </strong>Longitudinal plasma and cross-sectional CSF samples were collected from the YAC128 transgenic mouse model of HD and wild-type (WT) littermate control mice throughout the natural history of disease. Additionally, biofluids were collected from YAC128 mice following intracerebroventricular administration of an antisense oligonucleotide (ASO) targeting the mutant HTT transgene (HTT ASO), at ages both before and after the onset of disease phenotypes. NfL concentrations in plasma and CSF were quantified using ultrasensitive single-molecule array technology.</p><p><strong>Results: </strong>Plasma and CSF NfL concentrations were significantly elevated in YAC128 compared to WT littermate control mice from 9 months of age. Treatment of YAC128 mice with either 15 or 50 µg HTT ASO resulted in a dose-dependent, allele-selective reduction of mHTT throughout the brain at a 3-month interval, which was sustained with high-dose HTT ASO treatment for up to 6 months. Lowering of brain mHTT prior to the onset of regional brain atrophy and HD-like motor deficits in this model had minimal effect on plasma NfL at either dose, but led to a dose-dependent reduction of CSF NfL. In contrast, initiating mHTT lowering in the brain after the onset of neuropathological and behavioural phenotypes in YAC128 mice resulted in a dose-dependent stabilization of NfL increases in both plasma and CSF.</p><p><strong>Conclusions: </strong>Our data provide evidence that the response of NfL in biofluids is influenced by the magnitude of mHTT lowering in the brain and the timing of intervention, suggesting that NfL may serve as a promising exploratory response biomarker for HD.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"50"},"PeriodicalIF":10.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460072/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40035-024-00443-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Therapeutic approaches aimed at lowering toxic mutant huntingtin (mHTT) levels in the brain can reverse disease phenotypes in animal models of Huntington's disease (HD) and are currently being evaluated in clinical trials. Sensitive and dynamic response biomarkers are needed to assess the efficacy of such candidate therapies. Neurofilament light chain (NfL) is a biomarker of neurodegeneration that increases in cerebrospinal fluid (CSF) and blood with progression of HD. However, it remains unknown whether NfL in biofluids could serve as a response biomarker for assessing the efficacy of disease-modifying therapies for HD.

Methods: Longitudinal plasma and cross-sectional CSF samples were collected from the YAC128 transgenic mouse model of HD and wild-type (WT) littermate control mice throughout the natural history of disease. Additionally, biofluids were collected from YAC128 mice following intracerebroventricular administration of an antisense oligonucleotide (ASO) targeting the mutant HTT transgene (HTT ASO), at ages both before and after the onset of disease phenotypes. NfL concentrations in plasma and CSF were quantified using ultrasensitive single-molecule array technology.

Results: Plasma and CSF NfL concentrations were significantly elevated in YAC128 compared to WT littermate control mice from 9 months of age. Treatment of YAC128 mice with either 15 or 50 µg HTT ASO resulted in a dose-dependent, allele-selective reduction of mHTT throughout the brain at a 3-month interval, which was sustained with high-dose HTT ASO treatment for up to 6 months. Lowering of brain mHTT prior to the onset of regional brain atrophy and HD-like motor deficits in this model had minimal effect on plasma NfL at either dose, but led to a dose-dependent reduction of CSF NfL. In contrast, initiating mHTT lowering in the brain after the onset of neuropathological and behavioural phenotypes in YAC128 mice resulted in a dose-dependent stabilization of NfL increases in both plasma and CSF.

Conclusions: Our data provide evidence that the response of NfL in biofluids is influenced by the magnitude of mHTT lowering in the brain and the timing of intervention, suggesting that NfL may serve as a promising exploratory response biomarker for HD.

在亨廷顿氏病小鼠大脑中,血浆和脑脊液神经丝蛋白轻链浓度的升高会随着突变亨廷顿蛋白的降低而趋于稳定。
背景:旨在降低大脑中毒性突变亨廷顿蛋白(mHTT)水平的治疗方法可以逆转亨廷顿氏病(HD)动物模型的疾病表型,目前正在临床试验中进行评估。评估此类候选疗法的疗效需要敏感而动态的反应生物标志物。神经丝蛋白轻链(NfL)是神经变性的生物标志物,它在脑脊液(CSF)和血液中的含量会随着 HD 的进展而增加。然而,生物流体中的NfL是否可作为评估HD疾病调节疗法疗效的反应生物标志物仍是未知数:方法:从YAC128转基因HD小鼠模型和野生型(WT)同卵对照小鼠的整个自然病史中收集纵向血浆和横断面CSF样本。此外,还收集了YAC128小鼠在发病前后脑室内注射靶向突变型HTT转基因的反义寡核苷酸(ASO)后的生物流体。采用超灵敏单分子阵列技术对血浆和脑脊液中的NfL浓度进行了定量分析:结果:与WT同窝对照组小鼠相比,YAC128小鼠从9月龄起血浆和脑脊液中的NfL浓度明显升高。用 15 或 50 µg HTT ASO 治疗 YAC128 小鼠,可在 3 个月间隔内使整个大脑的 mHTT 出现剂量依赖性、等位基因选择性下降,这种下降在高剂量 HTT ASO 治疗下可持续长达 6 个月。在该模型出现区域性脑萎缩和类似 HD 的运动障碍之前降低脑 mHTT,无论采用哪种剂量,对血浆 NfL 的影响都微乎其微,但会导致 CSF NfL 出现剂量依赖性下降。与此相反,在YAC128小鼠的神经病理学和行为表型出现后开始降低大脑中的mHTT,会导致血浆和脑脊液中NfL的增加呈剂量依赖性稳定:我们的数据提供的证据表明,生物流体中 NfL 的反应受大脑中 mHTT 降低幅度和干预时机的影响,这表明 NfL 可作为一种有前途的探索性 HD 反应生物标记物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Translational Neurodegeneration
Translational Neurodegeneration Neuroscience-Cognitive Neuroscience
CiteScore
19.50
自引率
0.80%
发文量
44
审稿时长
10 weeks
期刊介绍: Translational Neurodegeneration, an open-access, peer-reviewed journal, addresses all aspects of neurodegenerative diseases. It serves as a prominent platform for research, therapeutics, and education, fostering discussions and insights across basic, translational, and clinical research domains. Covering Parkinson's disease, Alzheimer's disease, and other neurodegenerative conditions, it welcomes contributions on epidemiology, pathogenesis, diagnosis, prevention, drug development, rehabilitation, and drug delivery. Scientists, clinicians, and physician-scientists are encouraged to share their work in this specialized journal tailored to their fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信