{"title":"Multi-defense Pathways against Electrophiles through Adduct Formation by Low Molecular Weight Substances with Sulfur Atoms.","authors":"Yoshito Kumagai, Yumi Abiko, Masahiro Akiyama, Takamitsu Unoki, Yasuhiro Shinkai","doi":"10.1093/toxsci/kfae132","DOIUrl":null,"url":null,"abstract":"<p><p>There is a variety of electrophiles in the environment. In addition, there are precursor chemicals that undergo metabolic activation by enzymes and conversion to electrophiles in the body. Although electrophiles covalently bind to protein nucleophiles, they also form adducts associated with adaptive or toxic responses. Low molecular weight compounds containing sulfur are capable of blocking such adduct formation by capturing the electrophiles. In this review, we present out findings on the capture and inactivation of electrophiles by 1) intracellular glutathione, 2) reactive sulfur species and 3) extracellular cysteine (formed during the production of sulfur adducts). These actions not only substantially suppress electrophilic activity but also regulate protein adduct formation.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfae132","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is a variety of electrophiles in the environment. In addition, there are precursor chemicals that undergo metabolic activation by enzymes and conversion to electrophiles in the body. Although electrophiles covalently bind to protein nucleophiles, they also form adducts associated with adaptive or toxic responses. Low molecular weight compounds containing sulfur are capable of blocking such adduct formation by capturing the electrophiles. In this review, we present out findings on the capture and inactivation of electrophiles by 1) intracellular glutathione, 2) reactive sulfur species and 3) extracellular cysteine (formed during the production of sulfur adducts). These actions not only substantially suppress electrophilic activity but also regulate protein adduct formation.
期刊介绍:
The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology.
The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field.
The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.