Deciphering Cathepsin K inhibitors: a combined QSAR, docking and MD simulation based machine learning approaches for drug design.

IF 2.3 3区 环境科学与生态学 Q3 CHEMISTRY, MULTIDISCIPLINARY
S Ilyas, J Lee, Y Hwang, Y Choi, D Lee
{"title":"Deciphering Cathepsin K inhibitors: a combined QSAR, docking and MD simulation based machine learning approaches for drug design.","authors":"S Ilyas, J Lee, Y Hwang, Y Choi, D Lee","doi":"10.1080/1062936X.2024.2405626","DOIUrl":null,"url":null,"abstract":"<p><p>Cathepsin K (CatK), a lysosomal cysteine protease, contributes to skeletal abnormalities, heart diseases, lung inflammation, and central nervous system and immune disorders. Currently, CatK inhibitors are associated with severe adverse effects, therefore limiting their clinical utility. This study focuses on exploring quantitative structure-activity relationships (QSAR) on a dataset of CatK inhibitors (1804) compiled from the ChEMBL database to predict the inhibitory activities. After data cleaning and pre-processing, a total of 1568 structures were selected for exploratory data analysis which revealed physicochemical properties, distributions and statistical significance between the two groups of inhibitors. PubChem fingerprinting with 11 different machine-learning classification models was computed. The comparative analysis showed the ET model performed well with accuracy values for the training set (0.999), cross-validation (0.970) and test set (0.977) in line with OECD guidelines. Moreover, to gain structural insights on the origin of CatK inhibition, 15 diverse molecules were selected for molecular docking. The CatK inhibitors (1 and 2) exhibited strong binding energies of -8.3 and -7.2 kcal/mol, respectively. MD simulation (300 ns) showed strong structural stability, flexibility and interactions in selected complexes. This synergy between QSAR, docking, MD simulation and machine learning models strengthen our evidence for developing novel and resilient CatK inhibitors.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"771-793"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2024.2405626","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cathepsin K (CatK), a lysosomal cysteine protease, contributes to skeletal abnormalities, heart diseases, lung inflammation, and central nervous system and immune disorders. Currently, CatK inhibitors are associated with severe adverse effects, therefore limiting their clinical utility. This study focuses on exploring quantitative structure-activity relationships (QSAR) on a dataset of CatK inhibitors (1804) compiled from the ChEMBL database to predict the inhibitory activities. After data cleaning and pre-processing, a total of 1568 structures were selected for exploratory data analysis which revealed physicochemical properties, distributions and statistical significance between the two groups of inhibitors. PubChem fingerprinting with 11 different machine-learning classification models was computed. The comparative analysis showed the ET model performed well with accuracy values for the training set (0.999), cross-validation (0.970) and test set (0.977) in line with OECD guidelines. Moreover, to gain structural insights on the origin of CatK inhibition, 15 diverse molecules were selected for molecular docking. The CatK inhibitors (1 and 2) exhibited strong binding energies of -8.3 and -7.2 kcal/mol, respectively. MD simulation (300 ns) showed strong structural stability, flexibility and interactions in selected complexes. This synergy between QSAR, docking, MD simulation and machine learning models strengthen our evidence for developing novel and resilient CatK inhibitors.

解密 Cathepsin K 抑制剂:基于 QSAR、对接和 MD 模拟的机器学习药物设计组合方法。
Cathepsin K(CatK)是一种溶酶体半胱氨酸蛋白酶,可导致骨骼畸形、心脏病、肺部炎症以及中枢神经系统和免疫系统疾病。目前,CatK 抑制剂具有严重的不良反应,因此限制了其临床应用。本研究的重点是探索从 ChEMBL 数据库中收集的 CatK 抑制剂数据集(1804 个)的定量结构-活性关系(QSAR),以预测其抑制活性。经过数据清理和预处理后,共选择了 1568 个结构进行探索性数据分析,结果显示了两组抑制剂之间的理化性质、分布和统计意义。利用 11 种不同的机器学习分类模型计算了 PubChem 指纹。对比分析表明,ET 模型表现出色,其训练集(0.999)、交叉验证(0.970)和测试集(0.977)的准确度均符合 OECD 准则。此外,为了从结构上深入了解 CatK 抑制作用的起源,还选择了 15 种不同的分子进行分子对接。CatK 抑制剂(1 和 2)的结合能分别为 -8.3 和 -7.2 kcal/mol。MD 模拟(300 ns)显示所选复合物具有很强的结构稳定性、灵活性和相互作用。QSAR、对接、MD 模拟和机器学习模型之间的协同作用加强了我们开发新型弹性 CatK 抑制剂的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
20.00%
发文量
78
审稿时长
>24 weeks
期刊介绍: SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信