First test beam of the DMAPS-based proton tracker at the pMBRT facility at the Curie Institute.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL
M Granado-González, T Price, L Gonella, K Moustakas, T Hirono, T Hemperek, L De Marzi, A Patriarca
{"title":"First test beam of the DMAPS-based proton tracker at the pMBRT facility at the Curie Institute.","authors":"M Granado-González, T Price, L Gonella, K Moustakas, T Hirono, T Hemperek, L De Marzi, A Patriarca","doi":"10.1088/1361-6560/ad84b3","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Proton radiotherapy's efficacy relies on an accurate relative stopping power (RSP) map of the patient to optimise the treatment plan and minimize uncertainties. Currently, a conversion of a Hounsfield Units map obtained by a common x-ray computed tomography (CT) is used to compute the RSP. This conversion is one of the main limiting factors for proton radiotherapy. To bypass this conversion a direct RSP map could be obtained by performing a proton CT (pCT). The focal point of this article is to present a proof of concept of the potential of fast pixel technologies for proton tracking at clinical facilities.<i>Approach.</i>A two-layer tracker based on the TJ-Monopix1, a depleted monolithic active pixel sensor (DMAPS) chip initially designed for the ATLAS, was tested at the proton minibeam radiotherapy beamline at the Curie Institute. The chips were subjected to 100 MeV protons passing through the single slit collimator (0.4×20mm<sup>2</sup>) with fluxes up to1.3×107p s<sup>-1</sup> cm<sup>-2</sup>. The performance of the proton tracker was evaluated with GEANT4 simulations.<i>Main results.</i>The beam profile and dispersion in air were characterized by an opening of 0.031 mm cm<sup>-1</sup>, and aσx=0.172mm at the position of the slit. The results of the proton tracking show how the TJ-Monopix1 chip can effectively track protons in a clinical environment, achieving a tracking purity close to 70%, and a position resolution below 0.5 mm; confirming the chip's ability to handle high proton fluxes with a competitive performance.<i>Significance.</i>This work suggests that DMAPS technologies can be a cost-effective alternative for proton imaging. Additionally, the study identifies areas where further optimization of chip design is required to fully leverage these technologies for clinical ion imaging applications.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad84b3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Proton radiotherapy's efficacy relies on an accurate relative stopping power (RSP) map of the patient to optimise the treatment plan and minimize uncertainties. Currently, a conversion of a Hounsfield Units map obtained by a common x-ray computed tomography (CT) is used to compute the RSP. This conversion is one of the main limiting factors for proton radiotherapy. To bypass this conversion a direct RSP map could be obtained by performing a proton CT (pCT). The focal point of this article is to present a proof of concept of the potential of fast pixel technologies for proton tracking at clinical facilities.Approach.A two-layer tracker based on the TJ-Monopix1, a depleted monolithic active pixel sensor (DMAPS) chip initially designed for the ATLAS, was tested at the proton minibeam radiotherapy beamline at the Curie Institute. The chips were subjected to 100 MeV protons passing through the single slit collimator (0.4×20mm2) with fluxes up to1.3×107p s-1 cm-2. The performance of the proton tracker was evaluated with GEANT4 simulations.Main results.The beam profile and dispersion in air were characterized by an opening of 0.031 mm cm-1, and aσx=0.172mm at the position of the slit. The results of the proton tracking show how the TJ-Monopix1 chip can effectively track protons in a clinical environment, achieving a tracking purity close to 70%, and a position resolution below 0.5 mm; confirming the chip's ability to handle high proton fluxes with a competitive performance.Significance.This work suggests that DMAPS technologies can be a cost-effective alternative for proton imaging. Additionally, the study identifies areas where further optimization of chip design is required to fully leverage these technologies for clinical ion imaging applications.

居里研究所 pMBRT 设备上基于 DMAPS 的质子跟踪器的第一束试验光束。
\textbf{Objective.}质子放疗的疗效有赖于精确的患者相对停止功率(RSP)图,以优化治疗方案并将不确定性降至最低。目前,通过普通X射线计算机断层扫描(CT)获得的霍斯菲尔德单位(HU)图转换用于计算RSP。这种转换是质子放疗的主要限制因素之一。为了绕过这种转换,可以通过质子 CT(pCT)直接获得 RSP 图。本文的重点是介绍快速像素技术在临床设施质子跟踪方面的潜力的概念验证。基于TJ-Monopix1(一种最初为ATLAS设计的贫化单片有源像素传感器(DMAPS)芯片)的双层跟踪器在居里研究所的质子迷你束射电治疗(pMBRT)光束线进行了测试。这些芯片经受了通过单缝准直器(0.4\times$20 mm$^2$)的 100 MeV 质子的考验,通量高达 1.3 \times 10^7$ p/s/cm$^2$。质子跟踪器的性能通过 GEANT4 仿真进行了评估。 \textbf{主要结果:} 空气中的光束轮廓和弥散的特点是:开口为 0.031~mm/cm,狭缝位置的 $\sigma_x=0.172$~mm。质子跟踪的结果表明,TJ-Monopix1 芯片可以在临床环境中有效地跟踪质子,跟踪纯度接近~70~$\%$,位置分辨率低于 0.5 mm;证实了该芯片有能力处理高质子通量,且性能具有竞争力。这项研究表明,DMAPS 技术可以成为质子成像的一种经济有效的替代方案。此外,这项研究还确定了需要进一步优化芯片设计的领域,以便在临床离子成像应用中充分利用这些技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信