Efficient and safe in vivo treatment of primary hyperoxaluria type 1 via LNP-CRISPR-Cas9-mediated glycolate oxidase disruption.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Molecular Therapy Pub Date : 2025-01-08 Epub Date: 2024-10-09 DOI:10.1016/j.ymthe.2024.10.003
Yanhong Jiang, Shuanghong Chen, Shenlin Hsiao, Haokun Zhang, Da Xie, Zi Jun Wang, Wendan Ren, Mingyao Liu, Jiaoyang Liao, Yuxuan Wu
{"title":"Efficient and safe in vivo treatment of primary hyperoxaluria type 1 via LNP-CRISPR-Cas9-mediated glycolate oxidase disruption.","authors":"Yanhong Jiang, Shuanghong Chen, Shenlin Hsiao, Haokun Zhang, Da Xie, Zi Jun Wang, Wendan Ren, Mingyao Liu, Jiaoyang Liao, Yuxuan Wu","doi":"10.1016/j.ymthe.2024.10.003","DOIUrl":null,"url":null,"abstract":"<p><p>Primary hyperoxaluria type 1 (PH1) is a severe genetic metabolic disorder caused by mutations in the AGXT gene, leading to defects in enzymes crucial for glyoxylate metabolism. PH1 is characterized by severe, potentially life-threatening manifestations due to excessive oxalate accumulation, which leads to calcium oxalate crystal deposits in the kidneys and, ultimately, renal failure and systemic oxalosis. Existing substrate reduction therapies, such as inhibition of liver-specific glycolate oxidase (GO) encoded by HAO1 using siRNA or CRISPR-Cas9 delivered by adeno-associated virus, either require repeated dosing or have raised safety concerns. To address these limitations, our study employed lipid nanoparticles (LNPs) for CRISPR-Cas9 delivery to rapidly generate a PH1 mouse model and validate the therapeutic efficacy of LNP-CRISPR-Cas9 targeting the Hao1 gene. The LNP-CRISPR-Cas9 system exhibited efficient editing of the Hao1 gene, significantly reducing GO expression and lowering urinary oxalate levels in treated PH1 mice. Notably, these effects persisted for 12 months with no significant off-target effects, liver-induced toxicity, or substantial immune responses, highlighting the approach's safety and specificity. Furthermore, the developed humanized mouse model validated the efficacy of our therapeutic strategy. These findings support LNP-CRISPR-Cas9 targeting HAO1 as a promising and safer alternative for PH1 treatment with a single administration.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"104-118"},"PeriodicalIF":12.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.10.003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Primary hyperoxaluria type 1 (PH1) is a severe genetic metabolic disorder caused by mutations in the AGXT gene, leading to defects in enzymes crucial for glyoxylate metabolism. PH1 is characterized by severe, potentially life-threatening manifestations due to excessive oxalate accumulation, which leads to calcium oxalate crystal deposits in the kidneys and, ultimately, renal failure and systemic oxalosis. Existing substrate reduction therapies, such as inhibition of liver-specific glycolate oxidase (GO) encoded by HAO1 using siRNA or CRISPR-Cas9 delivered by adeno-associated virus, either require repeated dosing or have raised safety concerns. To address these limitations, our study employed lipid nanoparticles (LNPs) for CRISPR-Cas9 delivery to rapidly generate a PH1 mouse model and validate the therapeutic efficacy of LNP-CRISPR-Cas9 targeting the Hao1 gene. The LNP-CRISPR-Cas9 system exhibited efficient editing of the Hao1 gene, significantly reducing GO expression and lowering urinary oxalate levels in treated PH1 mice. Notably, these effects persisted for 12 months with no significant off-target effects, liver-induced toxicity, or substantial immune responses, highlighting the approach's safety and specificity. Furthermore, the developed humanized mouse model validated the efficacy of our therapeutic strategy. These findings support LNP-CRISPR-Cas9 targeting HAO1 as a promising and safer alternative for PH1 treatment with a single administration.

通过 LNP-CRISPR/Cas9 介导的乙醇酸氧化酶破坏,高效安全地在体内治疗原发性高草酸尿症 1 型。
原发性高草酸尿症 1 型(PH1)是一种严重的遗传代谢性疾病,由 AGXT 基因突变引起,导致乙醛酸代谢关键酶的缺陷。PH1 的特点是由于草酸盐过度积累,导致草酸钙晶体在肾脏沉积,最终导致肾功能衰竭和全身性草酸盐中毒,表现严重,可能危及生命。现有的底物减少疗法,如使用 siRNA 或通过腺相关病毒 (AAV) 释放的 CRISPR/Cas9 抑制由 HAO1 编码的肝脏特异性乙醇酸氧化酶 (GO),要么需要重复给药,要么引发了安全性问题。为了解决这些局限性,我们的研究采用脂质纳米粒子(LNPs)进行CRISPR/Cas9递送,快速生成了PH1小鼠模型,并验证了LNP-CRISPR/Cas9靶向Hao1基因的疗效。LNP-CRISPR/Cas9系统对Hao1基因进行了高效编辑,显著减少了GO的表达,降低了PH1小鼠的尿草酸盐水平。值得注意的是,这些效果可持续 12 个月,且无明显的脱靶效应、肝脏诱导毒性或实质性免疫反应,突出了该方法的安全性和特异性。此外,开发的人源化小鼠模型验证了我们治疗策略的有效性。这些研究结果支持以HAO1为靶点的LNP-CRISPR/Cas9作为一次性给药治疗PH1的一种有前景且更安全的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信