The effect of age on aqueous humor of humans with high myopia.
IF 1.8 3区 医学Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular VisionPub Date : 2024-03-20eCollection Date: 2024-01-01
Kai Wen, Mengjun Fu, Yongtao Li, Haorun Zhang, Xiu Wang, Yang Cai, Yaoling Li, Ruihong Su, Yifang Huang, Ming Liu, Yufeng Zhang, Shaozhen Zhao, Jing Sun
{"title":"The effect of age on aqueous humor of humans with high myopia.","authors":"Kai Wen, Mengjun Fu, Yongtao Li, Haorun Zhang, Xiu Wang, Yang Cai, Yaoling Li, Ruihong Su, Yifang Huang, Ming Liu, Yufeng Zhang, Shaozhen Zhao, Jing Sun","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>High myopia is a common cause of vision loss. Age is an important factor in the development of high myopia. However, the effect of age on aqueous humor proteins in the context of high myopia is unknown. This study explored the effect of age on the aqueous humor protein of humans with high myopia.</p><p><strong>Methods: </strong>The aqueous humor of high myopia patients of different ages with implantable collamer lens implantation (ICL) was collected. Data-independent acquisition proteomic analysis was employed to explore differentially expressed proteins (DEPs). Two different bioinformatics analysis methods were used to interpret the proteomic results. Furthermore, three proteins were confirmed by enzyme-linked immunosorbent assay (ELISA).</p><p><strong>Results: </strong>The study showed 18 upregulated and 20 downregulated proteins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the upregulated DEPs were highly enriched in coagulation and complement cascades. Weighted gene coexpression network analysis showed that the blue module was identified as a key module for high myopia and that the plasminogen (PLG) protein is a hub protein. ELISA confirmed that the expression levels of Alpha-1-antitrypsin were significantly upregulated in the aqueous humor of older patients presenting with high myopia.</p><p><strong>Conclusions: </strong>This is the first study to investigate the effect of age on the level of aqueous humor protein in high myopia. Our study provided a comprehensive data set on the overall protein changes of different ages of human high myopia, shedding light on its potential molecular mechanism in high myopia damage to the eyeball.</p>","PeriodicalId":18866,"journal":{"name":"Molecular Vision","volume":"30 ","pages":"137-149"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457953/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Vision","FirstCategoryId":"3","ListUrlMain":"","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: High myopia is a common cause of vision loss. Age is an important factor in the development of high myopia. However, the effect of age on aqueous humor proteins in the context of high myopia is unknown. This study explored the effect of age on the aqueous humor protein of humans with high myopia.
Methods: The aqueous humor of high myopia patients of different ages with implantable collamer lens implantation (ICL) was collected. Data-independent acquisition proteomic analysis was employed to explore differentially expressed proteins (DEPs). Two different bioinformatics analysis methods were used to interpret the proteomic results. Furthermore, three proteins were confirmed by enzyme-linked immunosorbent assay (ELISA).
Results: The study showed 18 upregulated and 20 downregulated proteins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the upregulated DEPs were highly enriched in coagulation and complement cascades. Weighted gene coexpression network analysis showed that the blue module was identified as a key module for high myopia and that the plasminogen (PLG) protein is a hub protein. ELISA confirmed that the expression levels of Alpha-1-antitrypsin were significantly upregulated in the aqueous humor of older patients presenting with high myopia.
Conclusions: This is the first study to investigate the effect of age on the level of aqueous humor protein in high myopia. Our study provided a comprehensive data set on the overall protein changes of different ages of human high myopia, shedding light on its potential molecular mechanism in high myopia damage to the eyeball.
期刊介绍:
Molecular Vision is a peer-reviewed journal dedicated to the dissemination of research results in molecular biology, cell biology, and the genetics of the visual system (ocular and cortical).
Molecular Vision publishes articles presenting original research that has not previously been published and comprehensive articles reviewing the current status of a particular field or topic. Submissions to Molecular Vision are subjected to rigorous peer review. Molecular Vision does NOT publish preprints.
For authors, Molecular Vision provides a rapid means of communicating important results. Access to Molecular Vision is free and unrestricted, allowing the widest possible audience for your article. Digital publishing allows you to use color images freely (and without fees). Additionally, you may publish animations, sounds, or other supplementary information that clarifies or supports your article. Each of the authors of an article may also list an electronic mail address (which will be updated upon request) to give interested readers easy access to authors.