Cai Y Ma, Chen Jiang, Thomas P Ilett, Thomas A Hazlehurst, David C Hogg, Kevin J Roberts
{"title":"Deconstructing 3D growth rates from transmission microscopy images of facetted crystals as captured <i>in situ</i> within supersaturated aqueous solutions.","authors":"Cai Y Ma, Chen Jiang, Thomas P Ilett, Thomas A Hazlehurst, David C Hogg, Kevin J Roberts","doi":"10.1107/S1600576724008173","DOIUrl":null,"url":null,"abstract":"<p><p>Here, a morphologically based approach is used for the <i>in situ</i> characterization of 3D growth rates of facetted crystals from the solution phase. Crystal images of single crystals of the β-form of l-glutamic acid are captured <i>in situ</i> during their growth at a relative supersaturation of 1.05 using transmission optical microscopy. The crystal growth rates estimated for both the {101} capping and {021} prismatic faces through image processing are consistent with those determined using reflection light mode [Jiang, Ma, Hazlehurst, Ilett, Jackson, Hogg & Roberts (2024 ▸). <i>Cryst. Growth Des.</i> <b>24</b>, 3277-3288]. The growth rate in the {010} face is, for the first time, estimated from the shadow widths of the {021} prismatic faces and found to be typically about half that of the {021} prismatic faces. Analysis of the 3D shape during growth reveals that the initial needle-like crystal morphology develops during the growth process to become more tabular, associated with the Zingg factor evolving from 2.9 to 1.7 (>1). The change in relative solution supersaturation during the growth process is estimated from calculations of the crystal volume, offering an alternative approach to determine this dynamically from visual observations.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460390/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576724008173","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Here, a morphologically based approach is used for the in situ characterization of 3D growth rates of facetted crystals from the solution phase. Crystal images of single crystals of the β-form of l-glutamic acid are captured in situ during their growth at a relative supersaturation of 1.05 using transmission optical microscopy. The crystal growth rates estimated for both the {101} capping and {021} prismatic faces through image processing are consistent with those determined using reflection light mode [Jiang, Ma, Hazlehurst, Ilett, Jackson, Hogg & Roberts (2024 ▸). Cryst. Growth Des.24, 3277-3288]. The growth rate in the {010} face is, for the first time, estimated from the shadow widths of the {021} prismatic faces and found to be typically about half that of the {021} prismatic faces. Analysis of the 3D shape during growth reveals that the initial needle-like crystal morphology develops during the growth process to become more tabular, associated with the Zingg factor evolving from 2.9 to 1.7 (>1). The change in relative solution supersaturation during the growth process is estimated from calculations of the crystal volume, offering an alternative approach to determine this dynamically from visual observations.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.