{"title":"Coordinate-based simulation of pair distance distribution functions for small and large molecular assemblies: implementation and applications.","authors":"Xiaobing Zuo, David M Tiede","doi":"10.1107/S1600576724007222","DOIUrl":null,"url":null,"abstract":"<p><p>X-ray scattering has become a major tool in the structural characterization of nanoscale materials. Thanks to the widely available experimental and computational atomic models, coordinate-based X-ray scattering simulation has played a crucial role in data interpretation in the past two decades. However, simulation of real-space pair distance distribution functions (PDDFs) from small- and wide-angle X-ray scattering, SAXS/WAXS, has been relatively less exploited. This study presents a comparison of PDDF simulation methods, which are applied to molecular structures that range in size from β-cyclo-dextrin [1 kDa molecular weight (MW), 66 non-hydrogen atoms] to the satellite tobacco mosaic virus capsid (1.1 MDa MW, 81 960 non-hydrogen atoms). The results demonstrate the power of interpretation of experimental SAXS/WAXS from the real-space view, particularly by providing a more intuitive method for understanding of partial structure contributions. Furthermore, the computational efficiency of PDDF simulation algorithms makes them attractive as approaches for the analysis of large nanoscale materials and biological assemblies. The simulation methods demonstrated in this article have been implemented in stand-alone software, <i>SolX 3.0</i>, which is available to download from https://12idb.xray.aps.anl.gov/solx.html.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"57 Pt 5","pages":"1446-1455"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576724007222","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
X-ray scattering has become a major tool in the structural characterization of nanoscale materials. Thanks to the widely available experimental and computational atomic models, coordinate-based X-ray scattering simulation has played a crucial role in data interpretation in the past two decades. However, simulation of real-space pair distance distribution functions (PDDFs) from small- and wide-angle X-ray scattering, SAXS/WAXS, has been relatively less exploited. This study presents a comparison of PDDF simulation methods, which are applied to molecular structures that range in size from β-cyclo-dextrin [1 kDa molecular weight (MW), 66 non-hydrogen atoms] to the satellite tobacco mosaic virus capsid (1.1 MDa MW, 81 960 non-hydrogen atoms). The results demonstrate the power of interpretation of experimental SAXS/WAXS from the real-space view, particularly by providing a more intuitive method for understanding of partial structure contributions. Furthermore, the computational efficiency of PDDF simulation algorithms makes them attractive as approaches for the analysis of large nanoscale materials and biological assemblies. The simulation methods demonstrated in this article have been implemented in stand-alone software, SolX 3.0, which is available to download from https://12idb.xray.aps.anl.gov/solx.html.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.