{"title":"Improving Molecule Generation and Drug Discovery with a Knowledge-enhanced Generative Model.","authors":"Aditya Malusare, Vaneet Aggarwal","doi":"10.1109/TCBB.2024.3477313","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in generative models have established state-of-the-art benchmarks in the generation of molecules and novel drug candidates. Despite these successes, a significant gap persists between generative models and the utilization of extensive biomedical knowledge, often systematized within knowledge graphs, whose potential to inform and enhance generative processes has not been realized. In this paper, we present a novel approach that bridges this divide by developing a framework for knowledge-enhanced generative models called KARL. We develop a scalable methodology to extend the functionality of knowledge graphs while preserving semantic integrity, and incorporate this contextual information into a generative framework to guide a diffusion-based model. The integration of knowledge graph embeddings with our generative model furnishes a robust mechanism for producing novel drug candidates possessing specific characteristics while ensuring validity and synthesizability. KARL outperforms state-of-the-art generative models on both unconditional and targeted generation tasks.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3477313","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in generative models have established state-of-the-art benchmarks in the generation of molecules and novel drug candidates. Despite these successes, a significant gap persists between generative models and the utilization of extensive biomedical knowledge, often systematized within knowledge graphs, whose potential to inform and enhance generative processes has not been realized. In this paper, we present a novel approach that bridges this divide by developing a framework for knowledge-enhanced generative models called KARL. We develop a scalable methodology to extend the functionality of knowledge graphs while preserving semantic integrity, and incorporate this contextual information into a generative framework to guide a diffusion-based model. The integration of knowledge graph embeddings with our generative model furnishes a robust mechanism for producing novel drug candidates possessing specific characteristics while ensuring validity and synthesizability. KARL outperforms state-of-the-art generative models on both unconditional and targeted generation tasks.
生成模型的最新进展为分子和新型候选药物的生成建立了最先进的基准。尽管取得了这些成就,但在生成模型与利用广泛的生物医学知识(通常在知识图谱中系统化)之间仍然存在着巨大的差距,而这些知识为生成过程提供信息和增强生成过程的潜力尚未实现。在本文中,我们提出了一种新颖的方法,通过开发一个名为 KARL 的知识增强生成模型框架来弥合这一鸿沟。我们开发了一种可扩展的方法来扩展知识图谱的功能,同时保持语义的完整性,并将这种上下文信息纳入生成框架,以指导基于扩散的模型。知识图谱嵌入与我们的生成模型相结合,提供了一种稳健的机制,用于生成具有特定特征的新型候选药物,同时确保有效性和可合成性。KARL 在无条件生成和目标生成任务上的表现都优于最先进的生成模型。
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system