{"title":"TBE-Net: A Deep Network Based on Tree-like Branch Encoder for Medical Image Segmentation.","authors":"Shukai Yang, Xiaoqian Zhang, Youdong He, Yufeng Chen, Ying Zhou","doi":"10.1109/JBHI.2024.3468904","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, encoder-decoder-based network structures have been widely used in designing medical image segmentation models. However, these methods still face some limitations: 1) The network's feature extraction capability is limited, primarily due to insufficient attention to the encoder, resulting in a failure to extract rich and effective features. 2) Unidirectional stepwise decoding of smaller-sized feature maps restricts segmentation performance. To address the above limitations, we propose an innovative Tree-like Branch Encoder Network (TBE-Net), which adopts a tree-like branch encoder to better perform feature extraction and preserve feature information. Additionally, we introduce the Depth and Width Expansion (D-WE) module to expand the network depth and width at low parameter cost, thereby enhancing network performance. Furthermore, we design a Deep Aggregation Module (DAM) to better aggregate and process encoder features. Subsequently, we directly decode the aggregated features to generate the segmentation map. The experimental results show that, compared to other advanced algorithms, our method, with the lowest parameter cost, achieved improvements in the IoU metric on the TNBC, PH2, CHASE-DB1, STARE, and COVID-19-CT-Seg datasets by 1.6%, 0.46%, 0.81%, 1.96%, and 0.86%, respectively.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3468904","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, encoder-decoder-based network structures have been widely used in designing medical image segmentation models. However, these methods still face some limitations: 1) The network's feature extraction capability is limited, primarily due to insufficient attention to the encoder, resulting in a failure to extract rich and effective features. 2) Unidirectional stepwise decoding of smaller-sized feature maps restricts segmentation performance. To address the above limitations, we propose an innovative Tree-like Branch Encoder Network (TBE-Net), which adopts a tree-like branch encoder to better perform feature extraction and preserve feature information. Additionally, we introduce the Depth and Width Expansion (D-WE) module to expand the network depth and width at low parameter cost, thereby enhancing network performance. Furthermore, we design a Deep Aggregation Module (DAM) to better aggregate and process encoder features. Subsequently, we directly decode the aggregated features to generate the segmentation map. The experimental results show that, compared to other advanced algorithms, our method, with the lowest parameter cost, achieved improvements in the IoU metric on the TNBC, PH2, CHASE-DB1, STARE, and COVID-19-CT-Seg datasets by 1.6%, 0.46%, 0.81%, 1.96%, and 0.86%, respectively.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.