Use of Oncogene Overlap by Tissue-Based Next-Generation Sequencing to Explore the Mutational Landscape and Survival Impact of HER2, KRAS and MET Copy-Number Gain in Nonsmall Cell Lung Cancer
Alexander S. Watson , Harris B. Krause , Andrew Elliott , Alex Farrell , Stephen V. Liu , Patrick C. Ma , Ari VanderWalde , George W. Sledge , David Spetzler , Erin L. Schenk , D. Ross Camidge
{"title":"Use of Oncogene Overlap by Tissue-Based Next-Generation Sequencing to Explore the Mutational Landscape and Survival Impact of HER2, KRAS and MET Copy-Number Gain in Nonsmall Cell Lung Cancer","authors":"Alexander S. Watson , Harris B. Krause , Andrew Elliott , Alex Farrell , Stephen V. Liu , Patrick C. Ma , Ari VanderWalde , George W. Sledge , David Spetzler , Erin L. Schenk , D. Ross Camidge","doi":"10.1016/j.cllc.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Gene copy number gain (CNG) is a continuous variable. The relevant cutpoint for <em>HER2, KRAS</em> and <em>MET</em> CNG in non-mall cell lung cancer remains uncertain. As de novo driver oncogenes are largely mutually exclusive, oncogene overlap analysis can be used to explore CNG thresholds.</div></div><div><h3>Patient and Methods</h3><div>We retrospectively analysed NGS of DNA/RNA in 13,702 NSCLC adenocarcinoma samples. Alternate and same-gene driver oncogene co-occurrence with <em>HER2, KRAS</em> and <em>MET</em> CNG was examined. Overall survival (OS) from time of biopsy collection was correlated with CNG and pathogenic mutations in driver oncogenes (Driver+).</div></div><div><h3>Results</h3><div>The frequency of Driver+ tumors decreased with increasing CNG. Setting CNG thresholds by oncogene overlap and dataset size (CNA ≥ 6 for <em>HER2, KRAS</em> and ≥ 4 for <em>MET</em>), tumors considered relevantly amplified (Amp) for <em>MET, HER2</em> and <em>KRAS</em> were significantly less likely to be Driver+ (<em>P</em> < .001). When Driver+ did overlap with Amp status, same-gene alterations (mutation and CNG) were significantly enriched for all 3 genes (<em>HER2, KRAS</em> and <em>MET</em>), while <em>BRAF</em> and <em>EGFR</em> mutations were more common in <em>MET</em>-Amp than in <em>HER2</em>- or <em>KRAS</em>-Amp tumors. A negative OS association with Amp status was independent of Driver+ status for <em>HER2</em> and <em>MET</em>, however not <em>KRAS</em>.</div></div><div><h3>Conclusion</h3><div>Tissue NGS-based <em>HER2, KRAS</em> and <em>MET</em> CNG thresholds set by oncogene overlap identified potentially clinically relevant “Amp” subgroups with altered genetic profiles and decreased survival. Prospective research into targeted therapy benefit in these groups is encouraged.</div></div>","PeriodicalId":10490,"journal":{"name":"Clinical lung cancer","volume":"25 8","pages":"Pages 712-722.e1"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical lung cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1525730424001967","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Gene copy number gain (CNG) is a continuous variable. The relevant cutpoint for HER2, KRAS and MET CNG in non-mall cell lung cancer remains uncertain. As de novo driver oncogenes are largely mutually exclusive, oncogene overlap analysis can be used to explore CNG thresholds.
Patient and Methods
We retrospectively analysed NGS of DNA/RNA in 13,702 NSCLC adenocarcinoma samples. Alternate and same-gene driver oncogene co-occurrence with HER2, KRAS and MET CNG was examined. Overall survival (OS) from time of biopsy collection was correlated with CNG and pathogenic mutations in driver oncogenes (Driver+).
Results
The frequency of Driver+ tumors decreased with increasing CNG. Setting CNG thresholds by oncogene overlap and dataset size (CNA ≥ 6 for HER2, KRAS and ≥ 4 for MET), tumors considered relevantly amplified (Amp) for MET, HER2 and KRAS were significantly less likely to be Driver+ (P < .001). When Driver+ did overlap with Amp status, same-gene alterations (mutation and CNG) were significantly enriched for all 3 genes (HER2, KRAS and MET), while BRAF and EGFR mutations were more common in MET-Amp than in HER2- or KRAS-Amp tumors. A negative OS association with Amp status was independent of Driver+ status for HER2 and MET, however not KRAS.
Conclusion
Tissue NGS-based HER2, KRAS and MET CNG thresholds set by oncogene overlap identified potentially clinically relevant “Amp” subgroups with altered genetic profiles and decreased survival. Prospective research into targeted therapy benefit in these groups is encouraged.
期刊介绍:
Clinical Lung Cancer is a peer-reviewed bimonthly journal that publishes original articles describing various aspects of clinical and translational research of lung cancer. Clinical Lung Cancer is devoted to articles on detection, diagnosis, prevention, and treatment of lung cancer. The main emphasis is on recent scientific developments in all areas related to lung cancer. Specific areas of interest include clinical research and mechanistic approaches; drug sensitivity and resistance; gene and antisense therapy; pathology, markers, and prognostic indicators; chemoprevention strategies; multimodality therapy; and integration of various approaches.