Interleukin 11 therapy causes acute left ventricular dysfunction.

IF 10.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Mark Sweeney, Katie O'Fee, Chelsie Villanueva-Hayes, Ekhlas Rahman, Michael Lee, Chung Nga Tam, Eneko Pascual-Navarro, Henrike Maatz, Eric L Lindberg, Konstantinos Vanezis, Chrishan J Ramachandra, Ivan Andrew, Emma R Jennings, Wei-Wen Lim, Anissa A Widjaja, David Carling, Derek J Hausenloy, Norbert Hübner, Paul J R Barton, Stuart A Cook
{"title":"Interleukin 11 therapy causes acute left ventricular dysfunction.","authors":"Mark Sweeney, Katie O'Fee, Chelsie Villanueva-Hayes, Ekhlas Rahman, Michael Lee, Chung Nga Tam, Eneko Pascual-Navarro, Henrike Maatz, Eric L Lindberg, Konstantinos Vanezis, Chrishan J Ramachandra, Ivan Andrew, Emma R Jennings, Wei-Wen Lim, Anissa A Widjaja, David Carling, Derek J Hausenloy, Norbert Hübner, Paul J R Barton, Stuart A Cook","doi":"10.1093/cvr/cvae224","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Interleukin 11 (IL11) was initially thought important for platelet production, which led to recombinant IL11 being developed as a drug to treat thrombocytopenia. IL11 was later found to be redundant for haematopoiesis, and its use in patients is associated with unexplained and severe cardiac side effects. Here, we aim to identify, for the first time, direct cardiomyocyte toxicities associated with IL11, which was previously believed cardioprotective.</p><p><strong>Methods and results: </strong>We injected recombinant mouse lL11 (rmIL11) into mice and studied its molecular effects in the heart using immunoblotting, qRT-PCR, bulk RNA-seq, single nuclei RNA-seq (snRNA-seq), and assay for transposase-accessible chromatin with sequencing (ATAC-seq). The physiological impact of IL11 was assessed by echocardiography in vivo and using cardiomyocyte contractility assays in vitro. To determine the activity of IL11 specifically in cardiomyocytes, we made two cardiomyocyte-specific Il11ra1 knockout (CMKO) mouse models using either AAV9-mediated and Tnnt2-restricted (vCMKO) or Myh6 (m6CMKO) Cre expression and an Il11ra1 floxed mouse strain. In pharmacologic studies, we studied the effects of JAK/STAT inhibition on rmIL11-induced cardiac toxicities. Injection of rmIL11 caused acute and dose-dependent impairment of left ventricular ejection fraction (saline: 62.4% ± 1.9; rmIL11: 32.6% ± 2.9, P < 0.001, n = 5). Following rmIL11 injection, myocardial STAT3 and JNK phosphorylation were increased and bulk RNA-seq revealed up-regulation of pro-inflammatory pathways (TNFα, NFκB, and JAK/STAT) and perturbed calcium handling. snRNA-seq showed rmIL11-induced expression of stress factors (Ankrd1, Ankrd23, Xirp2), activator protein-1 (AP-1) transcription factor genes, and Nppb in the cardiomyocyte compartment. Following rmIL11 injection, ATAC-seq identified the Ankrd1 and Nppb genes and loci enriched for stress-responsive, AP-1 transcription factor binding sites. Cardiomyocyte-specific effects were examined in vCMKO and m6CMKO mice, which were both protected from rmIL11-induced left ventricular impairment and molecular pathobiologies. In mechanistic studies, inhibition of JAK/STAT signalling with either ruxolitinib or tofacitinib prevented rmIL11-induced cardiac dysfunction.</p><p><strong>Conclusions: </strong>Injection of IL11 directly activates IL11RA/JAK/STAT3 in cardiomyocytes to cause acute heart failure. Our data overturn the earlier assumption that IL11 is cardioprotective and explain the serious cardiac side effects associated with IL11 therapy.</p>","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":"2220-2235"},"PeriodicalIF":10.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687394/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cvr/cvae224","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Interleukin 11 (IL11) was initially thought important for platelet production, which led to recombinant IL11 being developed as a drug to treat thrombocytopenia. IL11 was later found to be redundant for haematopoiesis, and its use in patients is associated with unexplained and severe cardiac side effects. Here, we aim to identify, for the first time, direct cardiomyocyte toxicities associated with IL11, which was previously believed cardioprotective.

Methods and results: We injected recombinant mouse lL11 (rmIL11) into mice and studied its molecular effects in the heart using immunoblotting, qRT-PCR, bulk RNA-seq, single nuclei RNA-seq (snRNA-seq), and assay for transposase-accessible chromatin with sequencing (ATAC-seq). The physiological impact of IL11 was assessed by echocardiography in vivo and using cardiomyocyte contractility assays in vitro. To determine the activity of IL11 specifically in cardiomyocytes, we made two cardiomyocyte-specific Il11ra1 knockout (CMKO) mouse models using either AAV9-mediated and Tnnt2-restricted (vCMKO) or Myh6 (m6CMKO) Cre expression and an Il11ra1 floxed mouse strain. In pharmacologic studies, we studied the effects of JAK/STAT inhibition on rmIL11-induced cardiac toxicities. Injection of rmIL11 caused acute and dose-dependent impairment of left ventricular ejection fraction (saline: 62.4% ± 1.9; rmIL11: 32.6% ± 2.9, P < 0.001, n = 5). Following rmIL11 injection, myocardial STAT3 and JNK phosphorylation were increased and bulk RNA-seq revealed up-regulation of pro-inflammatory pathways (TNFα, NFκB, and JAK/STAT) and perturbed calcium handling. snRNA-seq showed rmIL11-induced expression of stress factors (Ankrd1, Ankrd23, Xirp2), activator protein-1 (AP-1) transcription factor genes, and Nppb in the cardiomyocyte compartment. Following rmIL11 injection, ATAC-seq identified the Ankrd1 and Nppb genes and loci enriched for stress-responsive, AP-1 transcription factor binding sites. Cardiomyocyte-specific effects were examined in vCMKO and m6CMKO mice, which were both protected from rmIL11-induced left ventricular impairment and molecular pathobiologies. In mechanistic studies, inhibition of JAK/STAT signalling with either ruxolitinib or tofacitinib prevented rmIL11-induced cardiac dysfunction.

Conclusions: Injection of IL11 directly activates IL11RA/JAK/STAT3 in cardiomyocytes to cause acute heart failure. Our data overturn the earlier assumption that IL11 is cardioprotective and explain the serious cardiac side effects associated with IL11 therapy.

白细胞介素 11 治疗会导致急性左心室功能障碍。
目的:白细胞介素 11(IL11)最初被认为对血小板生成非常重要,因此重组 IL11 被开发为治疗血小板减少症的药物。后来发现 IL11 对于造血是多余的,而且在患者中使用 IL11 会产生原因不明的严重心脏副作用。在此,我们旨在首次发现与 IL11 相关的直接心肌细胞毒性,而以前认为 IL11 具有心脏保护作用:我们将重组小鼠 lL11(rmIL11)注射到小鼠体内,并使用免疫印迹、qRT-PCR、大量 RNA-seq、单核 RNA-seq (snRNA-seq)和 ATAC-seq 研究了它对心脏的分子影响。通过体内超声心动图和体外心肌细胞收缩力试验评估了IL11的生理影响。为了确定IL11在心肌细胞中的特异性活性,我们利用AAV9介导和Tnnt2-限制(vCMKO)或Myh6(m6CMKO)Cre表达以及Il11ra1基因缺失小鼠品系,制作了两种心肌细胞特异性Il11ra1基因敲除(CMKO)小鼠模型。在药理学研究中,我们研究了 JAK/STAT 抑制对 rmIL11 诱导的心脏毒性的影响。注射 rmIL11 会导致左心室射血分数急性和剂量依赖性损害(生理盐水:62.4% ± 1.9;rmIL11:32.6% ± 2.9,pConclusions:注射IL11可直接激活心肌细胞中的IL11RA/JAK/STAT3,从而导致急性心力衰竭。我们的数据推翻了之前关于IL11具有心脏保护作用的假设,并解释了与IL11疗法相关的严重心脏副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Research
Cardiovascular Research 医学-心血管系统
CiteScore
21.50
自引率
3.70%
发文量
547
审稿时长
1 months
期刊介绍: Cardiovascular Research Journal Overview: International journal of the European Society of Cardiology Focuses on basic and translational research in cardiology and cardiovascular biology Aims to enhance insight into cardiovascular disease mechanisms and innovation prospects Submission Criteria: Welcomes papers covering molecular, sub-cellular, cellular, organ, and organism levels Accepts clinical proof-of-concept and translational studies Manuscripts expected to provide significant contribution to cardiovascular biology and diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信