{"title":"Toward a better understanding of T cell dysregulation in autism: An integrative review","authors":"R.J. Moreno, R. Abu Amara, P. Ashwood","doi":"10.1016/j.bbi.2024.10.009","DOIUrl":null,"url":null,"abstract":"<div><div>Autism spectrum disorder (ASD) is a highly heterogeneous disorder characterized by impairments in social, communicative, and restrictive behaviors. Over the past 20 years, research has highlighted the role of the immune system in regulating neurodevelopment and behavior. In ASD, immune abnormalities are frequently observed, such as elevations in pro-inflammatory cytokines, alterations in immune cell frequencies, and dysregulated mechanisms of immune suppression. The adaptive immune system – the branch of the immune system conferring cellular immunity – may be involved in the etiology of ASD. Specifically, dysregulated T cell activity, characterized by altered cellular function and increased cytokine release, presence of inflammatory phenotypes and altered cellular signaling, has been consistently observed in several studies across multiple laboratories and geographic regions. Similarly, mechanisms regulating their activation are also disrupted. T cells at homeostasis coordinate the healthy development of the central nervous system (CNS) during early prenatal and postnatal development, and aid in CNS maintenance into adulthood. Thus, T cell dysregulation may play a role in neurodevelopment and the behavioral and cognitive manifestations observed in ASD. Outside of the CNS, aberrant T cell activity may also be responsible for the increased frequency of immune based conditions in the ASD population, such as allergies, gut inflammation and autoimmunity. In this review, we will discuss the current understanding of T cell biology in ASD and speculate on mechanisms behind their dysregulation. This review also evaluates how aberrant T cell biology affects gastrointestinal issues and behavior in the context of ASD.</div></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":"123 ","pages":"Pages 1147-1158"},"PeriodicalIF":8.8000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159124006494","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous disorder characterized by impairments in social, communicative, and restrictive behaviors. Over the past 20 years, research has highlighted the role of the immune system in regulating neurodevelopment and behavior. In ASD, immune abnormalities are frequently observed, such as elevations in pro-inflammatory cytokines, alterations in immune cell frequencies, and dysregulated mechanisms of immune suppression. The adaptive immune system – the branch of the immune system conferring cellular immunity – may be involved in the etiology of ASD. Specifically, dysregulated T cell activity, characterized by altered cellular function and increased cytokine release, presence of inflammatory phenotypes and altered cellular signaling, has been consistently observed in several studies across multiple laboratories and geographic regions. Similarly, mechanisms regulating their activation are also disrupted. T cells at homeostasis coordinate the healthy development of the central nervous system (CNS) during early prenatal and postnatal development, and aid in CNS maintenance into adulthood. Thus, T cell dysregulation may play a role in neurodevelopment and the behavioral and cognitive manifestations observed in ASD. Outside of the CNS, aberrant T cell activity may also be responsible for the increased frequency of immune based conditions in the ASD population, such as allergies, gut inflammation and autoimmunity. In this review, we will discuss the current understanding of T cell biology in ASD and speculate on mechanisms behind their dysregulation. This review also evaluates how aberrant T cell biology affects gastrointestinal issues and behavior in the context of ASD.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.