Jingyun Li , Siqi Zeng , Enyuan Zhang , Ling Chen , Jingbin Jiang , Jun Li
{"title":"Spatial metabolomics to discover hypertrophic scar relevant metabolic alterations and potential therapeutic strategies: A preliminary study","authors":"Jingyun Li , Siqi Zeng , Enyuan Zhang , Ling Chen , Jingbin Jiang , Jun Li","doi":"10.1016/j.bioorg.2024.107873","DOIUrl":null,"url":null,"abstract":"<div><div>Spatially mapping the metabolic remodeling of hypertrophic scar and surrounding normal skin tissues has the potential to enhance our comprehension of scar formation and aid in the advancement of therapeutic interventions. In this study, we employed matrix-assisted laser desorption/ionization (MALDI), a mass spectrometry imaging technique, to visualize the hierarchical distribution of metabolites within sections of hypertrophic scar and surrounding normal skin tissues. A comprehensive analysis identified a total of 1631 metabolites in these tissues. The top four classes that were identified included benzene and substituted derivatives, heterocyclic compounds, amino acids and its metabolites, and glycerophospholipids. In hypertrophic scar tissues, 22 metabolites were upregulated and 66 metabolites were downregulated. MetaboAnalyst pathway analysis indicated that glycerophospholipid metabolism was primarily associated with these altered 88 metabolites. Subsequently, six metabolites were selected, their spatial characteristics were analyzed, and they were individually added to the cell culture medium of primary hypertrophic scar fibroblasts. The preliminary findings of this study demonstrate that specific concentrations of 1-pyrrolidinecarboxamide, 2-benzylideneheptanal, glycerol trioleate, Lyso-PAF C-16, and moxonidine effectively inhibited the expressions of COL1A1, COL1A2, COL3A1, and ACTA2. These bioactive metabolites exhibit mild and non-toxic properties, along with favorable pharmacokinetics and pharmacodynamics, making them promising candidates for drug development. Consequently, this research offers novel therapeutic insights for hypertrophic scar treatment.</div></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"153 ","pages":"Article 107873"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045206824007788","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatially mapping the metabolic remodeling of hypertrophic scar and surrounding normal skin tissues has the potential to enhance our comprehension of scar formation and aid in the advancement of therapeutic interventions. In this study, we employed matrix-assisted laser desorption/ionization (MALDI), a mass spectrometry imaging technique, to visualize the hierarchical distribution of metabolites within sections of hypertrophic scar and surrounding normal skin tissues. A comprehensive analysis identified a total of 1631 metabolites in these tissues. The top four classes that were identified included benzene and substituted derivatives, heterocyclic compounds, amino acids and its metabolites, and glycerophospholipids. In hypertrophic scar tissues, 22 metabolites were upregulated and 66 metabolites were downregulated. MetaboAnalyst pathway analysis indicated that glycerophospholipid metabolism was primarily associated with these altered 88 metabolites. Subsequently, six metabolites were selected, their spatial characteristics were analyzed, and they were individually added to the cell culture medium of primary hypertrophic scar fibroblasts. The preliminary findings of this study demonstrate that specific concentrations of 1-pyrrolidinecarboxamide, 2-benzylideneheptanal, glycerol trioleate, Lyso-PAF C-16, and moxonidine effectively inhibited the expressions of COL1A1, COL1A2, COL3A1, and ACTA2. These bioactive metabolites exhibit mild and non-toxic properties, along with favorable pharmacokinetics and pharmacodynamics, making them promising candidates for drug development. Consequently, this research offers novel therapeutic insights for hypertrophic scar treatment.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.