Amal Yousfan, Arwa Omar Al Khatib, Afrah M H Salman, Mahmoud H Abu Elella, Glyn Barrett, Nicholas Michael, Mohammed Gulrez Zariwala, Hisham Al-Obaidi
{"title":"Innovative Microencapsulation of Polymyxin B for Enhanced Antimicrobial Efficacy via Coated Spray Drying.","authors":"Amal Yousfan, Arwa Omar Al Khatib, Afrah M H Salman, Mahmoud H Abu Elella, Glyn Barrett, Nicholas Michael, Mohammed Gulrez Zariwala, Hisham Al-Obaidi","doi":"10.1021/acs.molpharmaceut.4c00594","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to develop an innovative microencapsulation method for coated Polymyxin B, utilizing various polysaccharides such as hydroxypropyl β-cyclodextrin, alginate, and chitosan, implemented through a three-fluid nozzle (3FN) spray drying process. High-performance liquid chromatography (HPLC) analysis revealed that formulations with a high ratio of sugar cage, hydroxypropyl β-cyclodextrin (HPβCD), and sodium alginate (coded as ALG<sub>H</sub>CD<sub>H</sub>P<sub>L</sub><sup>PM</sup>) resulted in a notable 16-fold increase in Polymyxin B recovery compared to chitosan microparticles. Morphological assessments using fluorescence labeling confirmed successful microparticle formation with core/shell structures. Alginate-based formulations exhibited distinct layers, while chitosan formulations showed uniform fluorescence throughout the microparticles. Focused beam reflectance and histograms from fluorescence microscopic measurements provided insights into physical size analysis, indicating consistent sizes of 6.8 ± 1.2 μm. Fourier-transform infrared (FTIR) spectra unveiled hydrogen bonding between Polymyxin B and other components within the microparticle structures. The drug release study showed sodium alginate's sustained release capability, reaching 26 ± 3% compared to 94 ± 3% from the free solution at the 24 h time point. Furthermore, the antimicrobial properties of the prepared microparticles against two Gram-negative bacteria, <i>Escherichia coli</i> and <i>Pseudomonas aeruginosa</i>, were investigated. The influence of various key excipients on the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values was evaluated. Results demonstrated effective bactericidal effects of ALG<sub>H</sub>CD<sub>H</sub>P<sub>L</sub><sup>PM</sup> against both <i>E. coli</i> and <i>P. aeruginosa</i>. Additionally, the antibiofilm assay highlighted the potential efficacy of ALG<sub>H</sub>CD<sub>H</sub>P<sub>L</sub><sup>PM</sup> against the biofilm viability of <i>E. coli</i> and <i>P. aeruginosa</i>, with concentrations ranging from 3.9 to 500 μg/m. This signifies a significant advancement in antimicrobial drug delivery systems, promising improved precision and efficacy in combating bacterial infections.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00594","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to develop an innovative microencapsulation method for coated Polymyxin B, utilizing various polysaccharides such as hydroxypropyl β-cyclodextrin, alginate, and chitosan, implemented through a three-fluid nozzle (3FN) spray drying process. High-performance liquid chromatography (HPLC) analysis revealed that formulations with a high ratio of sugar cage, hydroxypropyl β-cyclodextrin (HPβCD), and sodium alginate (coded as ALGHCDHPLPM) resulted in a notable 16-fold increase in Polymyxin B recovery compared to chitosan microparticles. Morphological assessments using fluorescence labeling confirmed successful microparticle formation with core/shell structures. Alginate-based formulations exhibited distinct layers, while chitosan formulations showed uniform fluorescence throughout the microparticles. Focused beam reflectance and histograms from fluorescence microscopic measurements provided insights into physical size analysis, indicating consistent sizes of 6.8 ± 1.2 μm. Fourier-transform infrared (FTIR) spectra unveiled hydrogen bonding between Polymyxin B and other components within the microparticle structures. The drug release study showed sodium alginate's sustained release capability, reaching 26 ± 3% compared to 94 ± 3% from the free solution at the 24 h time point. Furthermore, the antimicrobial properties of the prepared microparticles against two Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, were investigated. The influence of various key excipients on the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values was evaluated. Results demonstrated effective bactericidal effects of ALGHCDHPLPM against both E. coli and P. aeruginosa. Additionally, the antibiofilm assay highlighted the potential efficacy of ALGHCDHPLPM against the biofilm viability of E. coli and P. aeruginosa, with concentrations ranging from 3.9 to 500 μg/m. This signifies a significant advancement in antimicrobial drug delivery systems, promising improved precision and efficacy in combating bacterial infections.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.