A Fractional Order Derivative Newton-Raphson Method for the Computation of the Power Flow Problem Solution in Energy Systems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Francisco Damasceno Freitas, Laice Neves de Oliveira
{"title":"A Fractional Order Derivative Newton-Raphson Method for the Computation of the Power Flow Problem Solution in Energy Systems","authors":"Francisco Damasceno Freitas, Laice Neves de Oliveira","doi":"10.1007/s13540-024-00342-9","DOIUrl":null,"url":null,"abstract":"<p>Some nonlinear real-valued equations have no solution in the real number field, and only roots of this nature are of practical interest. However, complex roots associated with the solution may introduce an interpretation of the physical problem analysis. This paper investigates the solution of nonlinear equations exploiting fractional order derivative (FOD) calculus resources. The theory addresses a solver that considers the FOD and Newton-Raphson method. The problem is extended to a multivariate fractional order derivative (MFOD) method so that a set of nonlinear equations can be resolved iteratively. Applications to the computation of the power flow problem in energy systems are used to illustrate some types of equations and solutions. The MFOD uses a numerical limits technique to determine a Jacobian required for the fractional application. This work demonstrates how real-valued nonlinear equations with complex roots can be solved by the MFOD Newton-Raphson approach. The results indicate the potentiality of the method reaches complex-valued solutions despite the iterative process starting with a real-valued guess. The complex-valued results are interpreted considering the connection between the imaginary part of a root and the divergence of the classical Newton-Raphson (CNR) method.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00342-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Some nonlinear real-valued equations have no solution in the real number field, and only roots of this nature are of practical interest. However, complex roots associated with the solution may introduce an interpretation of the physical problem analysis. This paper investigates the solution of nonlinear equations exploiting fractional order derivative (FOD) calculus resources. The theory addresses a solver that considers the FOD and Newton-Raphson method. The problem is extended to a multivariate fractional order derivative (MFOD) method so that a set of nonlinear equations can be resolved iteratively. Applications to the computation of the power flow problem in energy systems are used to illustrate some types of equations and solutions. The MFOD uses a numerical limits technique to determine a Jacobian required for the fractional application. This work demonstrates how real-valued nonlinear equations with complex roots can be solved by the MFOD Newton-Raphson approach. The results indicate the potentiality of the method reaches complex-valued solutions despite the iterative process starting with a real-valued guess. The complex-valued results are interpreted considering the connection between the imaginary part of a root and the divergence of the classical Newton-Raphson (CNR) method.

Abstract Image

用于计算能源系统中功率流问题解决方案的分数阶派生牛顿-拉斐森方法
有些非线性实值方程在实数域中没有解,只有这种性质的根才具有实际意义。然而,与解相关的复根可能会引入对物理问题分析的解释。本文利用分数阶导数(FOD)微积分资源研究非线性方程的解法。该理论涉及一种考虑了 FOD 和牛顿-拉斐森方法的求解器。该问题被扩展到多元分数阶导数 (MFOD) 方法,从而可以迭代地求解一组非线性方程。该方法应用于能源系统中功率流问题的计算,以说明一些方程类型和解法。MFOD 使用数值极限技术来确定分数应用所需的雅各布。这项工作展示了如何利用 MFOD 牛顿-拉斐森方法求解具有复根的实值非线性方程。结果表明,尽管迭代过程是从实值猜测开始的,但该方法仍具有达到复值解的潜力。考虑到根的虚部与经典牛顿-拉斐森(CNR)方法的发散之间的联系,可以对复值结果进行解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信