Francisco Damasceno Freitas, Laice Neves de Oliveira
{"title":"A Fractional Order Derivative Newton-Raphson Method for the Computation of the Power Flow Problem Solution in Energy Systems","authors":"Francisco Damasceno Freitas, Laice Neves de Oliveira","doi":"10.1007/s13540-024-00342-9","DOIUrl":null,"url":null,"abstract":"<p>Some nonlinear real-valued equations have no solution in the real number field, and only roots of this nature are of practical interest. However, complex roots associated with the solution may introduce an interpretation of the physical problem analysis. This paper investigates the solution of nonlinear equations exploiting fractional order derivative (FOD) calculus resources. The theory addresses a solver that considers the FOD and Newton-Raphson method. The problem is extended to a multivariate fractional order derivative (MFOD) method so that a set of nonlinear equations can be resolved iteratively. Applications to the computation of the power flow problem in energy systems are used to illustrate some types of equations and solutions. The MFOD uses a numerical limits technique to determine a Jacobian required for the fractional application. This work demonstrates how real-valued nonlinear equations with complex roots can be solved by the MFOD Newton-Raphson approach. The results indicate the potentiality of the method reaches complex-valued solutions despite the iterative process starting with a real-valued guess. The complex-valued results are interpreted considering the connection between the imaginary part of a root and the divergence of the classical Newton-Raphson (CNR) method.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"56 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00342-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Some nonlinear real-valued equations have no solution in the real number field, and only roots of this nature are of practical interest. However, complex roots associated with the solution may introduce an interpretation of the physical problem analysis. This paper investigates the solution of nonlinear equations exploiting fractional order derivative (FOD) calculus resources. The theory addresses a solver that considers the FOD and Newton-Raphson method. The problem is extended to a multivariate fractional order derivative (MFOD) method so that a set of nonlinear equations can be resolved iteratively. Applications to the computation of the power flow problem in energy systems are used to illustrate some types of equations and solutions. The MFOD uses a numerical limits technique to determine a Jacobian required for the fractional application. This work demonstrates how real-valued nonlinear equations with complex roots can be solved by the MFOD Newton-Raphson approach. The results indicate the potentiality of the method reaches complex-valued solutions despite the iterative process starting with a real-valued guess. The complex-valued results are interpreted considering the connection between the imaginary part of a root and the divergence of the classical Newton-Raphson (CNR) method.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.