Matroid-rooted packing of arborescences

IF 0.9 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zoltán Szigeti
{"title":"Matroid-rooted packing of arborescences","authors":"Zoltán Szigeti","doi":"10.1007/s10878-024-01219-6","DOIUrl":null,"url":null,"abstract":"<p>The problem of matroid-based packing of arborescences was introduced and solved in Durand de Gevigney et al. (SIAM J Discret Math 27(1):567-574) . Frank (In personal communication) reformulated the problem in an extended framework. We proved in Fortier et al. (J Graph Theory 93(2):230-252) that the problem of matroid-based packing of spanning arborescences is NP-complete in the extended framework. Here we show a characterization of the existence of a matroid-based packing of spanning arborescences in the original framework. This leads us to the introduction of a new problem on packing of arborescences with a new matroid constraint. We characterize mixed graphs having a matroid-rooted, <i>k</i>-regular, (<i>f</i>, <i>g</i>)-bounded packing of mixed arborescences, that is, a packing of mixed arborescences such that their roots form a basis in a given matroid, each vertex belongs to exactly <i>k</i> of them and each vertex <i>v</i> is the root of least <i>f</i>(<i>v</i>) and at most <i>g</i>(<i>v</i>) of them. We also characterize dypergraphs having a matroid-rooted, <i>k</i>-regular, (<i>f</i>, <i>g</i>)-bounded packing of hyperarborescences.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"46 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01219-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of matroid-based packing of arborescences was introduced and solved in Durand de Gevigney et al. (SIAM J Discret Math 27(1):567-574) . Frank (In personal communication) reformulated the problem in an extended framework. We proved in Fortier et al. (J Graph Theory 93(2):230-252) that the problem of matroid-based packing of spanning arborescences is NP-complete in the extended framework. Here we show a characterization of the existence of a matroid-based packing of spanning arborescences in the original framework. This leads us to the introduction of a new problem on packing of arborescences with a new matroid constraint. We characterize mixed graphs having a matroid-rooted, k-regular, (fg)-bounded packing of mixed arborescences, that is, a packing of mixed arborescences such that their roots form a basis in a given matroid, each vertex belongs to exactly k of them and each vertex v is the root of least f(v) and at most g(v) of them. We also characterize dypergraphs having a matroid-rooted, k-regular, (fg)-bounded packing of hyperarborescences.

Abstract Image

树枝的矩阵根包装
Durand de Gevigney 等人(SIAM J Discret Math 27(1):567-574)提出并解决了基于矩阵的树枝打包问题。弗兰克(在个人通信中)在扩展框架中重新提出了这一问题。我们在 Fortier 等人 (J Graph Theory 93(2):230-252) 一文中证明,在扩展框架中,基于矩阵的跨 Arborescences 包装问题是 NP-完全的。在这里,我们展示了在原始框架中基于矩阵的跨 Arborescences packing 的存在性。由此,我们引入了一个新问题,即带有新的矩阵约束的箭形打包问题。我们描述了具有矩阵根、k 规则、(f, g)有界混合树状图打包的混合图的特征,即混合树状图打包,使得它们的根构成给定矩阵的一个基,每个顶点正好属于其中的 k 个,每个顶点 v 至少是其中 f(v) 的根,最多是其中 g(v) 的根。我们还描述了具有以 matroid 为根、k 规则、(f,g)有界的超光环包装的双峰图的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信