Euclid: Constraining linearly scale-independent modifications of gravity with the spectroscopic and photometric primary probes★

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
N. Frusciante, F. Pace, V. F. Cardone, S. Casas, I. Tutusaus, M. Ballardini, E. Bellini, G. Benevento, B. Bose, P. Valageas, N. Bartolo, P. Brax, P. G. Ferreira, F. Finelli, K. Koyama, L. Legrand, L. Lombriser, D. Paoletti, M. Pietroni, A. Rozas-Fernández, Z. Sakr, A. Silvestri, F. Vernizzi, H. A. Winther, N. Aghanim, L. Amendola, N. Auricchio, R. Azzollini, M. Baldi, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, C. Carbone, J. Carretero, M. Castellano, S. Cavuoti, A. Cimatti, R. Cledassou, G. Congedo, L. Conversi, Y. Copin, L. Corcione, F. Courbin, M. Cropper, A. Da Silva, H. Degaudenzi, J. Dinis, F. Dubath, X. Dupac, S. Dusini, S. Farrens, S. Ferriol, P. Fosalba, M. Frailis, E. Franceschi, S. Galeotta, B. Gillis, C. Giocoli, A. Grazian, F. Grupp, L. Guzzo, S. V. H. Haugan, W. Holmes, F. Hormuth, A. Hornstrup, K. Jahnke, S. Kermiche, A. Kiessling, M. Kilbinger, T. Kitching, M. Kunz, H. Kurki-Suonio, S. Ligori, P. B. Lilje, I. Lloro, E. Maiorano, O. Mansutti, O. Marggraf, K. Markovic, F. Marulli, R. Massey, E. Medinaceli, M. Meneghetti, G. Meylan, M. Moresco, L. Moscardini, E. Munari, S. M. Niemi, J. Nightingale, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, W. J. Percival, V. Pettorino, G. Polenta, M. Poncet, L. Popa, F. Raison, R. Rebolo, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, R. Saglia, D. Sapone, B. Sartoris, A. Secroun, G. Seidel, C. Sirignano, G. Sirri, L. Stanco, C. Surace, P. Tallada-Crespí, A. N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, E. A. Valentijn, L. Valenziano, T. Vassallo, G. A. Verdoes Kleijn, Y. Wang, A. Zacchei, G. Zamorani, J. Zoubian, V. Scottez
{"title":"Euclid: Constraining linearly scale-independent modifications of gravity with the spectroscopic and photometric primary probes★","authors":"N. Frusciante, F. Pace, V. F. Cardone, S. Casas, I. Tutusaus, M. Ballardini, E. Bellini, G. Benevento, B. Bose, P. Valageas, N. Bartolo, P. Brax, P. G. Ferreira, F. Finelli, K. Koyama, L. Legrand, L. Lombriser, D. Paoletti, M. Pietroni, A. Rozas-Fernández, Z. Sakr, A. Silvestri, F. Vernizzi, H. A. Winther, N. Aghanim, L. Amendola, N. Auricchio, R. Azzollini, M. Baldi, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, C. Carbone, J. Carretero, M. Castellano, S. Cavuoti, A. Cimatti, R. Cledassou, G. Congedo, L. Conversi, Y. Copin, L. Corcione, F. Courbin, M. Cropper, A. Da Silva, H. Degaudenzi, J. Dinis, F. Dubath, X. Dupac, S. Dusini, S. Farrens, S. Ferriol, P. Fosalba, M. Frailis, E. Franceschi, S. Galeotta, B. Gillis, C. Giocoli, A. Grazian, F. Grupp, L. Guzzo, S. V. H. Haugan, W. Holmes, F. Hormuth, A. Hornstrup, K. Jahnke, S. Kermiche, A. Kiessling, M. Kilbinger, T. Kitching, M. Kunz, H. Kurki-Suonio, S. Ligori, P. B. Lilje, I. Lloro, E. Maiorano, O. Mansutti, O. Marggraf, K. Markovic, F. Marulli, R. Massey, E. Medinaceli, M. Meneghetti, G. Meylan, M. Moresco, L. Moscardini, E. Munari, S. M. Niemi, J. Nightingale, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, W. J. Percival, V. Pettorino, G. Polenta, M. Poncet, L. Popa, F. Raison, R. Rebolo, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, R. Saglia, D. Sapone, B. Sartoris, A. Secroun, G. Seidel, C. Sirignano, G. Sirri, L. Stanco, C. Surace, P. Tallada-Crespí, A. N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, E. A. Valentijn, L. Valenziano, T. Vassallo, G. A. Verdoes Kleijn, Y. Wang, A. Zacchei, G. Zamorani, J. Zoubian, V. Scottez","doi":"10.1051/0004-6361/202347526","DOIUrl":null,"url":null,"abstract":"<i>Context<i/>. The future <i>Euclid<i/> space satellite mission will offer an invaluable opportunity to constrain modifications to Einstein’s general relativity at cosmic scales. In this paper, we focus on modified gravity models characterised, at linear scales, by a scale-independent growth of perturbations while featuring different testable types of derivative screening mechanisms at smaller non-linear scales.<i>Aims<i/>. We considered three specific models, namely Jordan-Brans-Dicke, a scalar-tensor theory with a flat potential, the normal branch of Dvali-Gabadadze-Porrati (nDGP) gravity, a braneworld model in which our Universe is a four-dimensional brane embedded in a five-dimensional Minkowski space-time, and <i>k<i/>-mouflage gravity, an extension of <i>k<i/>-essence scenarios with a universal coupling of the scalar field to matter. In preparation for real data, we provide forecasts from spectroscopic and photometric primary probes by <i>Euclid<i/> on the cosmological parameters and the additional parameters of the models, respectively, <i>ω<i/><sub>BD<sub/>, Ω<sub>гc<sub/> and <i>ϵ<i/><sub>2,0<sub/>, which quantify the deviations from general relativity. This analysis will improve our knowledge of the cosmology of these modified gravity models.<i>Methods<i/>. The forecast analysis employs the Fisher matrix method applied to weak lensing (WL); photometric galaxy clustering (GC<sub>ph<sub/>), spectroscopic galaxy clustering (GC<sub>sp<sub/>) and the cross-correlation (XC) between GC<sub>ph<sub/> and WL. For the <i>Euclid<i/> survey specifications, we define three scenarios that are characterised by different cuts in the maximum multipole and wave number, to assess the constraining power of non-linear scales. For each model we considered two fiducial values for the corresponding model parameter.<i>Results<i/>. In an optimistic setting at 68.3% confidence interval, we find the following percentage relative errors with <i>Euclid<i/> alone: for log<sub>10<sub/> <i>ω<i/><sub>BD<sub/>, with a fiducial value of <i>ω<i/><sub>BD<sub/> = 800, 27.1% using GC<sub>sp<sub/> alone, 3.6% using GC<sub>ph<sub/>+WL+XC and 3.2% using GC<sub>ph<sub/>+WL+XC+GC<sub>sp<sub/>; for log<sub>10<sub/> Ω<sub>гc<sub/>, with a fiducial value of Ω<sub>гc<sub/> = 0.25, we find 93.4, 20 and 15% respectively; and finally, for <i>ϵ<i/><sub>2,0<sub/> = −0.04, we find 3.4%, 0.15%, and 0.14%. From the relative errors for fiducial values closer to their ΛCDM limits, we find that most of the constraining power is lost. Our results highlight the importance of the constraining power from non-linear scales.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202347526","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. The future Euclid space satellite mission will offer an invaluable opportunity to constrain modifications to Einstein’s general relativity at cosmic scales. In this paper, we focus on modified gravity models characterised, at linear scales, by a scale-independent growth of perturbations while featuring different testable types of derivative screening mechanisms at smaller non-linear scales.Aims. We considered three specific models, namely Jordan-Brans-Dicke, a scalar-tensor theory with a flat potential, the normal branch of Dvali-Gabadadze-Porrati (nDGP) gravity, a braneworld model in which our Universe is a four-dimensional brane embedded in a five-dimensional Minkowski space-time, and k-mouflage gravity, an extension of k-essence scenarios with a universal coupling of the scalar field to matter. In preparation for real data, we provide forecasts from spectroscopic and photometric primary probes by Euclid on the cosmological parameters and the additional parameters of the models, respectively, ωBD, Ωгc and ϵ2,0, which quantify the deviations from general relativity. This analysis will improve our knowledge of the cosmology of these modified gravity models.Methods. The forecast analysis employs the Fisher matrix method applied to weak lensing (WL); photometric galaxy clustering (GCph), spectroscopic galaxy clustering (GCsp) and the cross-correlation (XC) between GCph and WL. For the Euclid survey specifications, we define three scenarios that are characterised by different cuts in the maximum multipole and wave number, to assess the constraining power of non-linear scales. For each model we considered two fiducial values for the corresponding model parameter.Results. In an optimistic setting at 68.3% confidence interval, we find the following percentage relative errors with Euclid alone: for log10 ωBD, with a fiducial value of ωBD = 800, 27.1% using GCsp alone, 3.6% using GCph+WL+XC and 3.2% using GCph+WL+XC+GCsp; for log10 Ωгc, with a fiducial value of Ωгc = 0.25, we find 93.4, 20 and 15% respectively; and finally, for ϵ2,0 = −0.04, we find 3.4%, 0.15%, and 0.14%. From the relative errors for fiducial values closer to their ΛCDM limits, we find that most of the constraining power is lost. Our results highlight the importance of the constraining power from non-linear scales.
欧几里得:利用光谱和光度主探测器制约与尺度无关的线性引力修正★.
背景。未来的欧几里得太空卫星任务将为在宇宙尺度上约束爱因斯坦广义相对论的修正提供宝贵的机会。在本文中,我们重点研究了修正引力模型,在线性尺度上,模型的特征是扰动的增长与尺度无关,而在较小的非线性尺度上,模型具有不同类型的可检验的导数屏蔽机制。我们考虑了三个具体模型,即乔丹-布兰-迪克(Jordan-Brans-Dicke)模型(一种具有平势的标量张量理论)、德瓦利-加巴达兹-波拉提(Dvali-Gabadze-Porrati,nDGP)引力的正态分支(一种我们的宇宙是嵌入五维闵科夫斯基时空中的四维布兰的支线世界模型),以及k-伪装引力(k-essence情景的扩展,具有标量场与物质的普遍耦合)。为了准备真实数据,我们通过欧几里得对宇宙学参数和模型附加参数(分别为ωBD、ωгc 和ϵ2,0)的光谱和光度初探进行了预测,这些参数量化了与广义相对论的偏差。这项分析将增进我们对这些修正引力模型宇宙学的了解。预测分析采用了费雪矩阵方法,该方法适用于弱透镜(WL)、测光星系聚类(GCph)、光谱星系聚类(GCsp)以及 GCph 和 WL 之间的交叉相关(XC)。对于 Euclid 勘测规范,我们定义了三种情况,它们的特点是对最大多极和波数进行不同的削减,以评估非线性尺度的约束能力。对于每个模型,我们都考虑了相应模型参数的两个基准值。在置信区间为 68.3%的乐观设置下,我们发现仅使用 Euclid 时的相对误差百分比如下:对于 log10 ωBD,当 ωBD = 800 时,仅使用 GCsp 时的误差为 27.1%,使用 GCph+WP 时的误差为 3.6%。6%,GCph+WL+XC+GCsp 为 3.2%;对于 log10 Ωгc,当 Ωгc = 0.25 时,我们分别发现了 93.4%、20% 和 15%;最后,对于 ϵ2,0 = -0.04,我们分别发现了 3.4%、0.15% 和 0.14%。从更接近ΛCDM极限的靶值的相对误差来看,我们发现大部分约束能力都丧失了。我们的结果凸显了非线性尺度约束能力的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信