{"title":"TMSST-RID: A Target-Oriented SAR-ISAR Imaging Method Based on Synchrosqueezing","authors":"Zhifeng Xie;Lei Cui;Qingyuan Shen;Xiaoqing Wang;Peiqing Yang;Xingyi Su;Haifeng Huang","doi":"10.1109/TCI.2024.3468032","DOIUrl":null,"url":null,"abstract":"Synthetic aperture radar (SAR) is an important high-resolution radar system for target surveillance. However, target motion causes a time-varying Doppler frequency in echo and defocused SAR images. To obtain a focused target image, the inverse SAR synthetic aperture radar (ISAR) algorithm is applied: the image is inverted back to the echo and focused using the ISAR imaging algorithm. Clutter significantly impacts the target focusing effect during the SAR-ISAR imaging process. To improve the SAR-ISAR imaging quality of ship targets in the presence of severe sea clutter interference, this article proposes a range instantaneous Doppler method based on the low-rank sparse decomposition and target-oriented multisynchrosqueezing transform (TMSST-RID), which can enhance the target while suppressing clutter. The target area is separated from the clutter area using the low-rank sparse decomposition method. Then, in the time–frequency (TF) analysis, our proposed TMSST method utilizes the prior of the target area to improve the signal-to-clutter ratio (SCR) of the SAR/ISAR image. Compared with the traditional TF transformation, the proposed TMSST enhances the target by sharpening the TF target representation while simultaneously avoiding clutter enhancement. The superiority of this SAR/ISAR imaging method is demonstrated in a performance evaluation using simulated and real radar data for ship targets in sea clutter.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"1425-1438"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10697447/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic aperture radar (SAR) is an important high-resolution radar system for target surveillance. However, target motion causes a time-varying Doppler frequency in echo and defocused SAR images. To obtain a focused target image, the inverse SAR synthetic aperture radar (ISAR) algorithm is applied: the image is inverted back to the echo and focused using the ISAR imaging algorithm. Clutter significantly impacts the target focusing effect during the SAR-ISAR imaging process. To improve the SAR-ISAR imaging quality of ship targets in the presence of severe sea clutter interference, this article proposes a range instantaneous Doppler method based on the low-rank sparse decomposition and target-oriented multisynchrosqueezing transform (TMSST-RID), which can enhance the target while suppressing clutter. The target area is separated from the clutter area using the low-rank sparse decomposition method. Then, in the time–frequency (TF) analysis, our proposed TMSST method utilizes the prior of the target area to improve the signal-to-clutter ratio (SCR) of the SAR/ISAR image. Compared with the traditional TF transformation, the proposed TMSST enhances the target by sharpening the TF target representation while simultaneously avoiding clutter enhancement. The superiority of this SAR/ISAR imaging method is demonstrated in a performance evaluation using simulated and real radar data for ship targets in sea clutter.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.