Weakly supervised learning for subcutaneous edema segmentation of abdominal CT using pseudo-labels and multi-stage nnU-Nets.

Sayantan Bhadra, Jianfei Liu, Ronald M Summers
{"title":"Weakly supervised learning for subcutaneous edema segmentation of abdominal CT using pseudo-labels and multi-stage nnU-Nets.","authors":"Sayantan Bhadra, Jianfei Liu, Ronald M Summers","doi":"10.1117/12.3008793","DOIUrl":null,"url":null,"abstract":"<p><p>Volumetric assessment of edema due to anasarca can help monitor the progression of diseases such as kidney, liver or heart failure. The ability to measure edema non-invasively by automatic segmentation from abdominal CT scans may be of clinical importance. The current state-of-the-art method for edema segmentation using intensity priors is susceptible to false positives or under-segmentation errors. The application of modern supervised deep learning methods for 3D edema segmentation is limited due to challenges in manual annotation of edema. In the absence of accurate 3D annotations of edema, we propose a weakly supervised learning method that uses edema segmentations produced by intensity priors as pseudo-labels, along with pseudo-labels of muscle, subcutaneous and visceral adipose tissues for context, to produce more refined segmentations with demonstrably lower segmentation errors. The proposed method employs nnU-Nets in multiple stages to produce the final edema segmentation. The results demonstrate the potential of weakly supervised learning using edema and tissue pseudo-labels in improved quantification of edema for clinical applications.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12927 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450639/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3008793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Volumetric assessment of edema due to anasarca can help monitor the progression of diseases such as kidney, liver or heart failure. The ability to measure edema non-invasively by automatic segmentation from abdominal CT scans may be of clinical importance. The current state-of-the-art method for edema segmentation using intensity priors is susceptible to false positives or under-segmentation errors. The application of modern supervised deep learning methods for 3D edema segmentation is limited due to challenges in manual annotation of edema. In the absence of accurate 3D annotations of edema, we propose a weakly supervised learning method that uses edema segmentations produced by intensity priors as pseudo-labels, along with pseudo-labels of muscle, subcutaneous and visceral adipose tissues for context, to produce more refined segmentations with demonstrably lower segmentation errors. The proposed method employs nnU-Nets in multiple stages to produce the final edema segmentation. The results demonstrate the potential of weakly supervised learning using edema and tissue pseudo-labels in improved quantification of edema for clinical applications.

利用伪标签和多级 nnU-Nets 对腹部 CT 的皮下水肿分割进行弱监督学习
对腹水引起的水肿进行体积评估有助于监测肾脏、肝脏或心脏衰竭等疾病的进展情况。通过自动分割腹部 CT 扫描图像来无创测量水肿的能力可能具有重要的临床意义。目前最先进的水肿分割方法使用强度先验,容易出现假阳性或分割不足的错误。由于人工标注水肿的挑战,现代深度学习方法在三维水肿分割中的应用受到了限制。在缺乏准确的水肿三维注释的情况下,我们提出了一种弱监督学习方法,该方法使用强度先验产生的水肿分割作为伪标签,同时使用肌肉、皮下和内脏脂肪组织的伪标签作为上下文,以产生更精细的分割,明显降低分割误差。所提出的方法在多个阶段使用 nnU-Nets 生成最终的水肿分割。结果表明,使用水肿和组织伪标签进行弱监督学习,可以提高水肿量化的临床应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信