Unsupervised Multi-parametric MRI Registration Using Neural Optimal Transport.

Boah Kim, Tejas Sudharshan Mathai, Ronald M Summers
{"title":"Unsupervised Multi-parametric MRI Registration Using Neural Optimal Transport.","authors":"Boah Kim, Tejas Sudharshan Mathai, Ronald M Summers","doi":"10.1117/12.3006289","DOIUrl":null,"url":null,"abstract":"<p><p>Precise deformable image registration of multi-parametric MRI sequences is necessary for radiologists in order to identify abnormalities and diagnose diseases, such as prostate cancer and lymphoma. Despite recent advances in unsupervised learning-based registration, volumetric medical image registration that requires considering the variety of data distributions is still challenging. To address the problem of multi-parametric MRI sequence data registration, we propose an unsupervised domain-transported registration method, called OTMorph by employing neural optimal transport that learns an optimal transport plan to map different data distributions. We have designed a novel framework composed of a transport module and a registration module: the former transports data distribution from the moving source domain to the fixed target domain, and the latter takes the transported data and provides the deformed moving volume that is aligned with the fixed volume. Through end-to-end learning, our proposed method can effectively learn deformable registration for the volumes in different distributions. Experimental results with abdominal multi-parametric MRI sequence data show that our method has superior performance over around 67-85% in deforming the MRI volumes compared to the existing learning-based methods. Our method is generic in nature and can be used to register inter-/intra-modality images by mapping the different data distributions in network training.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12927 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450653/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3006289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Precise deformable image registration of multi-parametric MRI sequences is necessary for radiologists in order to identify abnormalities and diagnose diseases, such as prostate cancer and lymphoma. Despite recent advances in unsupervised learning-based registration, volumetric medical image registration that requires considering the variety of data distributions is still challenging. To address the problem of multi-parametric MRI sequence data registration, we propose an unsupervised domain-transported registration method, called OTMorph by employing neural optimal transport that learns an optimal transport plan to map different data distributions. We have designed a novel framework composed of a transport module and a registration module: the former transports data distribution from the moving source domain to the fixed target domain, and the latter takes the transported data and provides the deformed moving volume that is aligned with the fixed volume. Through end-to-end learning, our proposed method can effectively learn deformable registration for the volumes in different distributions. Experimental results with abdominal multi-parametric MRI sequence data show that our method has superior performance over around 67-85% in deforming the MRI volumes compared to the existing learning-based methods. Our method is generic in nature and can be used to register inter-/intra-modality images by mapping the different data distributions in network training.

使用神经优化传输的无监督多参数磁共振成像注册
放射科医生需要对多参数磁共振成像序列进行精确的可变形图像配准,以识别异常并诊断疾病,如前列腺癌和淋巴瘤。尽管最近在基于无监督学习的配准方面取得了进展,但需要考虑各种数据分布的容积医学图像配准仍具有挑战性。为了解决多参数核磁共振成像序列数据配准问题,我们提出了一种无监督域传输配准方法,称为 OTMorph,它采用神经优化传输,学习最佳传输方案来映射不同的数据分布。我们设计了一个由传输模块和配准模块组成的新框架:前者将数据分布从移动源域传输到固定目标域,后者接收传输的数据并提供与固定体对齐的变形移动体。通过端到端学习,我们提出的方法可以有效地学习不同分布的体的可变形配准。腹部多参数核磁共振成像序列数据的实验结果表明,与现有的基于学习的方法相比,我们的方法在核磁共振成像体变形方面的性能优越约 67-85%。我们的方法具有通用性,通过在网络训练中映射不同的数据分布,可用于跨/跨模态图像的配准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信