Christoph Schmidt, Wasilios Hatziklitiu, Frederik Trinkmann, Giorgio Cattaneo, Johannes Port
{"title":"Investigation of inert gas washout methods in a new numerical model based on an electrical analogy.","authors":"Christoph Schmidt, Wasilios Hatziklitiu, Frederik Trinkmann, Giorgio Cattaneo, Johannes Port","doi":"10.1007/s11517-024-03200-1","DOIUrl":null,"url":null,"abstract":"<p><p>Inert gas washout methods have been shown to detect pathological changes in the small airways that occur in the early stages of obstructive lung diseases such as asthma and COPD. Numerical lung models support the analysis of characteristic washout curves, but are limited in their ability to simulate the complexity of lung anatomy over an appropriate time period. Therefore, the interpretation of patient-specific washout data remains a challenge. A new numerical lung model is presented in which electrical components describe the anatomical and physiological characteristics of the lung as well as gas-specific properties. To verify that the model is able to reproduce characteristic washout curves, the phase 3 slopes (S<sub>3</sub>) of helium washouts are simulated using simple asymmetric lung anatomies consisting of two parallel connected lung units with volume ratios of <math> <mfrac><mrow><mn>1.25</mn></mrow> <mrow><mn>0.75</mn></mrow> </mfrac> </math> , <math> <mfrac><mrow><mn>1.50</mn></mrow> <mrow><mn>0.50</mn></mrow> </mfrac> </math> , and <math> <mfrac><mrow><mn>1.75</mn></mrow> <mrow><mn>0.25</mn></mrow> </mfrac> </math> and a total volume flow of 250 ml/s which are evaluated for asymmetries in both the convection- and diffusion-dominated zone of the lung. The results show that the model is able to reproduce the S<sub>3</sub> for helium and thus the processes underlying the washout methods, so that electrical components can be used to model these methods. This approach could form the basis of a hardware-based real-time simulator.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"447-466"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750920/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03200-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Inert gas washout methods have been shown to detect pathological changes in the small airways that occur in the early stages of obstructive lung diseases such as asthma and COPD. Numerical lung models support the analysis of characteristic washout curves, but are limited in their ability to simulate the complexity of lung anatomy over an appropriate time period. Therefore, the interpretation of patient-specific washout data remains a challenge. A new numerical lung model is presented in which electrical components describe the anatomical and physiological characteristics of the lung as well as gas-specific properties. To verify that the model is able to reproduce characteristic washout curves, the phase 3 slopes (S3) of helium washouts are simulated using simple asymmetric lung anatomies consisting of two parallel connected lung units with volume ratios of , , and and a total volume flow of 250 ml/s which are evaluated for asymmetries in both the convection- and diffusion-dominated zone of the lung. The results show that the model is able to reproduce the S3 for helium and thus the processes underlying the washout methods, so that electrical components can be used to model these methods. This approach could form the basis of a hardware-based real-time simulator.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).