Metal chelation as an antibacterial strategy for Pseudomonas aeruginosa and Acinetobacter baumannii

IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Martina M. Golden, Amelia C. Heppe, Cassandra L. Zaremba and William M. Wuest
{"title":"Metal chelation as an antibacterial strategy for Pseudomonas aeruginosa and Acinetobacter baumannii","authors":"Martina M. Golden, Amelia C. Heppe, Cassandra L. Zaremba and William M. Wuest","doi":"10.1039/D4CB00175C","DOIUrl":null,"url":null,"abstract":"<p >It is estimated that by 2050, bacterial infections will cause 1.8 million more deaths than cancer annually, and the current lack of antibiotic drug discovery is only exacerbating the crisis. Two pathogens in particular, Gram-negative bacteria <em>A. baumannii</em> and <em>P. aeruginosa</em>, are of grave concern because of their heightened multi-drug resistance due to a dense, impermeable outer membrane. However, targeting specific cellular processes may prove successful in overcoming bacterial resistance. This review will concentrate on a novel approach to combatting pathogenicity by disarming bacteria through the disruption of metal homeostasis to reduce virulence and enhance antibiotic uptake. The varying levels of success in bringing metallophores to clinical trials, with currently only one FDA-approved siderophore antibiotic to date, will also be detailed.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" 11","pages":" 1083-1096"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446287/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cb/d4cb00175c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

It is estimated that by 2050, bacterial infections will cause 1.8 million more deaths than cancer annually, and the current lack of antibiotic drug discovery is only exacerbating the crisis. Two pathogens in particular, Gram-negative bacteria A. baumannii and P. aeruginosa, are of grave concern because of their heightened multi-drug resistance due to a dense, impermeable outer membrane. However, targeting specific cellular processes may prove successful in overcoming bacterial resistance. This review will concentrate on a novel approach to combatting pathogenicity by disarming bacteria through the disruption of metal homeostasis to reduce virulence and enhance antibiotic uptake. The varying levels of success in bringing metallophores to clinical trials, with currently only one FDA-approved siderophore antibiotic to date, will also be detailed.

Abstract Image

金属螯合作为铜绿假单胞菌和鲍曼不动杆菌的抗菌策略。
据估计,到 2050 年,细菌感染每年造成的死亡人数将比癌症多 180 万,而目前抗生素药物研发的匮乏只会加剧这一危机。有两种病原体尤其令人担忧,它们是革兰氏阴性细菌鲍曼尼氏菌和铜绿假单胞菌,因为它们的外膜致密、不透水,具有很强的多重耐药性。然而,针对特定的细胞过程可能会成功克服细菌的耐药性。本综述将集中讨论一种对抗致病性的新方法,即通过破坏金属平衡解除细菌的武装,从而降低毒性并提高抗生素吸收率。此外,还将详细介绍将金属噬菌体用于临床试验所取得的不同程度的成功,目前只有一种金属噬菌体抗生素获得了美国食品药物管理局的批准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
128
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信