{"title":"Reprogramming multi-stable snapping and energy dissipation in origami metamaterials through panel confinement.","authors":"Abdulrahman Almessabi, Xuwen Li, Amin Jamalimehr, Damiano Pasini","doi":"10.1098/rsta.2024.0005","DOIUrl":null,"url":null,"abstract":"<p><p>With a focus on a class of origami-inspired metamaterials, this work explores the role of panel confinement in their mechanical response under cyclic loading. The goal is twofold: (i) quantify the magnitude change in snapping force and energy dissipation attained by varying the severity of confinement of selected panels; and (ii) leverage insights to modulate <i>in situ</i> their mechanical response as dictated by a given application, hence propose panel confinement modulation as a practical design route for response reprogrammability. Through computational modelling, proof-of-concept fabrication and cyclic testing, we first identify and characterize the governing factors enabling either the alteration or the preservation of the snapping force magnitude during repeated cycles of forward and backward loading. Then, we demonstrate how the <i>in situ</i> modulation of the constrained distance between selected panels enables reprogramming their snapping sequence and energy dissipation. The results contribute to expanding the versatility and application of this class of origami metamaterial across sectors, from aerospace to protective equipment, requiring precise control of mechanical damping and energy dissipation.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2283","pages":"20240005"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0005","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
With a focus on a class of origami-inspired metamaterials, this work explores the role of panel confinement in their mechanical response under cyclic loading. The goal is twofold: (i) quantify the magnitude change in snapping force and energy dissipation attained by varying the severity of confinement of selected panels; and (ii) leverage insights to modulate in situ their mechanical response as dictated by a given application, hence propose panel confinement modulation as a practical design route for response reprogrammability. Through computational modelling, proof-of-concept fabrication and cyclic testing, we first identify and characterize the governing factors enabling either the alteration or the preservation of the snapping force magnitude during repeated cycles of forward and backward loading. Then, we demonstrate how the in situ modulation of the constrained distance between selected panels enables reprogramming their snapping sequence and energy dissipation. The results contribute to expanding the versatility and application of this class of origami metamaterial across sectors, from aerospace to protective equipment, requiring precise control of mechanical damping and energy dissipation.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.