{"title":"Energy-harvesting tile incorporating an origami coupling mechanism.","authors":"Shadi Khazaaleh, Ahmed S Dalaq, Mohammed F Daqaq","doi":"10.1098/rsta.2024.0015","DOIUrl":null,"url":null,"abstract":"<p><p>We present the design and evaluation of a simple, compact and efficient electromagnetic energy harvesting tile that can be used to harness energy from footsteps. The proposed harvester incorporates a translational-rotational origami-inspired coupling mechanism to transform the axial loads exerted by human footsteps into a localized rotation of an electromagnetic generator. The coupling mechanism employs a non-rigid tunable Kresling spring, the restorative behaviour of which is tunable to maximize energy transduction from the applied load to the generator. A computational model is developed to optimize the design parameters of the mechanism, which are then utilized to fabricate a prototype of the energy harvester. The tile is tested under loading conditions that mimic a human step, where it is demonstrated that it is capable of generating 4.18 W of electrical power per step with a surface power density of 2609 μW cm<sup>-2</sup>.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2283","pages":"20240015"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0015","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We present the design and evaluation of a simple, compact and efficient electromagnetic energy harvesting tile that can be used to harness energy from footsteps. The proposed harvester incorporates a translational-rotational origami-inspired coupling mechanism to transform the axial loads exerted by human footsteps into a localized rotation of an electromagnetic generator. The coupling mechanism employs a non-rigid tunable Kresling spring, the restorative behaviour of which is tunable to maximize energy transduction from the applied load to the generator. A computational model is developed to optimize the design parameters of the mechanism, which are then utilized to fabricate a prototype of the energy harvester. The tile is tested under loading conditions that mimic a human step, where it is demonstrated that it is capable of generating 4.18 W of electrical power per step with a surface power density of 2609 μW cm-2.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.