Chang-qing Tong , Meng-jia Li , Yan Liu , Qin Zhou , Wen-qi Sun , Jia-yi Chen , Di Wang , Feng Li , Zi-jie Chen , Yue-han Song
{"title":"Regulation of hippocampal miRNA expression by intestinal flora in anxiety-like mice","authors":"Chang-qing Tong , Meng-jia Li , Yan Liu , Qin Zhou , Wen-qi Sun , Jia-yi Chen , Di Wang , Feng Li , Zi-jie Chen , Yue-han Song","doi":"10.1016/j.ejphar.2024.177016","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the possible interaction between gut flora and miRNAs and the effect of both on anxiety disorders. The model group was induced with chronic restraint stress (CRS) and each group was tested for anxiety-like behaviour by open field test and elevated plus maze test. Meanwhile, the gut flora was analysed by 16S rRNA high-throughput sequencing. The miRNAs in hippocampus were analysed by high-throughput sequencing, and the key miRNAs were obtained by using the method of bioinformatics analysis. PCR was used to verify the significantly related key miRNAs. Spearman correlation analysis was used to explore the correlation between behaviour, key miRNAs and differential gut microbiota. The 16S rRNA high-throughput sequencing result showed that the gut flora was dysregulated in the model group. In particular, Verrucomicrobia, <em>Akkermansia</em>, <em>Anaerostipes</em>, <em>Ralstonia</em>, <em>Burkholderia</em> and <em>Anaeroplasma</em> were correlated with behaviour. The results of miRNA high-throughput sequencing analysis and bioinformatics analysis showed that 7 key miRNAs influenced the pathogenesis of anxiety, and qRT-PCR results were consistent with the high-throughput sequencing results. Mmu-miR-543-3p and mmu-miR-26a-5p were positively correlated with Verrucomicrobia, <em>Akkermansia</em> and <em>Anaerostipes</em>. Therefore, we infer that chronic stress caused the decrease of <em>Akkermansia</em> abundance, which may aggravate the decrease of mmu-miR-543-3p and mmu-miR-26a-5p expression, leading to the increase of SLC1A2 expression. In conclusion, gut flora has played an important influence on anxiety with changes in miRNAs.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"984 ","pages":"Article 177016"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299924007064","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the possible interaction between gut flora and miRNAs and the effect of both on anxiety disorders. The model group was induced with chronic restraint stress (CRS) and each group was tested for anxiety-like behaviour by open field test and elevated plus maze test. Meanwhile, the gut flora was analysed by 16S rRNA high-throughput sequencing. The miRNAs in hippocampus were analysed by high-throughput sequencing, and the key miRNAs were obtained by using the method of bioinformatics analysis. PCR was used to verify the significantly related key miRNAs. Spearman correlation analysis was used to explore the correlation between behaviour, key miRNAs and differential gut microbiota. The 16S rRNA high-throughput sequencing result showed that the gut flora was dysregulated in the model group. In particular, Verrucomicrobia, Akkermansia, Anaerostipes, Ralstonia, Burkholderia and Anaeroplasma were correlated with behaviour. The results of miRNA high-throughput sequencing analysis and bioinformatics analysis showed that 7 key miRNAs influenced the pathogenesis of anxiety, and qRT-PCR results were consistent with the high-throughput sequencing results. Mmu-miR-543-3p and mmu-miR-26a-5p were positively correlated with Verrucomicrobia, Akkermansia and Anaerostipes. Therefore, we infer that chronic stress caused the decrease of Akkermansia abundance, which may aggravate the decrease of mmu-miR-543-3p and mmu-miR-26a-5p expression, leading to the increase of SLC1A2 expression. In conclusion, gut flora has played an important influence on anxiety with changes in miRNAs.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.