Vamsi Mangena, Rony Chanoch-Myers, Rafaela Sartore, Bruna Paulsen, Simon Gritsch, Hannah Weisman, Toshiro Hara, Xandra O Breakefield, Koen Breyne, Aviv Regev, Kwanghun Chung, Paola Arlotta, Itay Tirosh, Mario L Suvà
{"title":"Glioblastoma Cortical Organoids Recapitulate Cell-State Heterogeneity and Intercellular Transfer.","authors":"Vamsi Mangena, Rony Chanoch-Myers, Rafaela Sartore, Bruna Paulsen, Simon Gritsch, Hannah Weisman, Toshiro Hara, Xandra O Breakefield, Koen Breyne, Aviv Regev, Kwanghun Chung, Paola Arlotta, Itay Tirosh, Mario L Suvà","doi":"10.1158/2159-8290.CD-23-1336","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) is characterized by heterogeneous malignant cells that are functionally integrated within the neuroglial microenvironment. In this study, we model this ecosystem by growing GBM into long-term cultured human cortical organoids that contain the major neuroglial cell types found in the cerebral cortex. Single-cell RNA sequencing analysis suggests that, compared with matched gliomasphere models, GBM cortical organoids more faithfully recapitulate the diversity and expression programs of malignant cell states found in patient tumors. Additionally, we observe widespread transfer of GBM transcripts and GFP to nonmalignant cells in the organoids. Mechanistically, this transfer involves extracellular vesicles and is biased toward defined GBM cell states and astroglia cell types. These results extend previous GBM organoid modeling efforts and suggest widespread intercellular transfer in the GBM neuroglial microenvironment. Significance: Models that recapitulate intercellular communications in GBM are limited. In this study, we leverage GBM cortical organoids to characterize widespread mRNA and GFP transfer from malignant to nonmalignant cells in the GBM neuroglial microenvironment. This transfer involves extracellular vesicles, may contribute to reprogramming the microenvironment, and may extend to other cancer types. See related commentary by Shakya et al., p. 261.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"299-315"},"PeriodicalIF":29.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803396/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2159-8290.CD-23-1336","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma (GBM) is characterized by heterogeneous malignant cells that are functionally integrated within the neuroglial microenvironment. In this study, we model this ecosystem by growing GBM into long-term cultured human cortical organoids that contain the major neuroglial cell types found in the cerebral cortex. Single-cell RNA sequencing analysis suggests that, compared with matched gliomasphere models, GBM cortical organoids more faithfully recapitulate the diversity and expression programs of malignant cell states found in patient tumors. Additionally, we observe widespread transfer of GBM transcripts and GFP to nonmalignant cells in the organoids. Mechanistically, this transfer involves extracellular vesicles and is biased toward defined GBM cell states and astroglia cell types. These results extend previous GBM organoid modeling efforts and suggest widespread intercellular transfer in the GBM neuroglial microenvironment. Significance: Models that recapitulate intercellular communications in GBM are limited. In this study, we leverage GBM cortical organoids to characterize widespread mRNA and GFP transfer from malignant to nonmalignant cells in the GBM neuroglial microenvironment. This transfer involves extracellular vesicles, may contribute to reprogramming the microenvironment, and may extend to other cancer types. See related commentary by Shakya et al., p. 261.
期刊介绍:
Cancer Discovery publishes high-impact, peer-reviewed articles detailing significant advances in both research and clinical trials. Serving as a premier cancer information resource, the journal also features Review Articles, Perspectives, Commentaries, News stories, and Research Watch summaries to keep readers abreast of the latest findings in the field. Covering a wide range of topics, from laboratory research to clinical trials and epidemiologic studies, Cancer Discovery spans the entire spectrum of cancer research and medicine.