{"title":"Exenatide administration time-dependently affects the hepatic circadian clock through glucagon-like peptide-1 receptors in the central nervous system","authors":"Pingping Xu , Jun-ichi Morishige , Zheng Jing , Naoto Nagata , Yifan Shi , Tomohiro Iba , Takiko Daikoku , Masanori Ono , Yoshiko Maida , Tomoko Fujiwara , Hiroshi Fujiwara , Hitoshi Ando","doi":"10.1016/j.bcp.2024.116567","DOIUrl":null,"url":null,"abstract":"<div><div>Accumulating evidence indicates that disruption of the circadian clock contributes to the development of lifestyle-related diseases. We have previously shown that exenatide, a glucagon-like peptide-1 (GLP-1) receptor agonist, can strongly affect the molecular clocks in the peripheral tissues. This study aimed to investigate the effects of its dosing time and the central nervous system-specific GLP-1 receptor knockdown (GLP1RKD) on the hepatic clock in mice treated with exenatide. Male C57BL/6J and GLP1RKD mice were housed under a 12-h/12-h light/dark cycle, and feeding was restricted to either the light period (L-TRF) or the first 4 h in the dark period (D-TRF). In parallel, exenatide was administered 4–5 times, once daily either at the beginning of the dark (ZT 12) or light period (ZT 0), and we assessed the mRNA expression rhythms of clock genes in the liver thereafter. Exenatide administration at ZT 12 counteracted the phase shift effect of the L-TRF on the hepatic clock of wild-type mice, whereas the dosing at ZT 0 enhanced its effect. However, exenatide did not influence the phase of the hepatic clock under D-TRF regardless of the dosing time. The effect of exenatide in wild-type mice weakened in GLP1RKD mice. These results showed that exenatide dosing time-dependently affects the hepatic circadian clock through the central GLP-1 system. Exenatide administration at the beginning of the active period (i.e., in the morning for humans) might prevent disruption of the peripheral clocks caused by irregular eating habits.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"230 ","pages":"Article 116567"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295224005677","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Accumulating evidence indicates that disruption of the circadian clock contributes to the development of lifestyle-related diseases. We have previously shown that exenatide, a glucagon-like peptide-1 (GLP-1) receptor agonist, can strongly affect the molecular clocks in the peripheral tissues. This study aimed to investigate the effects of its dosing time and the central nervous system-specific GLP-1 receptor knockdown (GLP1RKD) on the hepatic clock in mice treated with exenatide. Male C57BL/6J and GLP1RKD mice were housed under a 12-h/12-h light/dark cycle, and feeding was restricted to either the light period (L-TRF) or the first 4 h in the dark period (D-TRF). In parallel, exenatide was administered 4–5 times, once daily either at the beginning of the dark (ZT 12) or light period (ZT 0), and we assessed the mRNA expression rhythms of clock genes in the liver thereafter. Exenatide administration at ZT 12 counteracted the phase shift effect of the L-TRF on the hepatic clock of wild-type mice, whereas the dosing at ZT 0 enhanced its effect. However, exenatide did not influence the phase of the hepatic clock under D-TRF regardless of the dosing time. The effect of exenatide in wild-type mice weakened in GLP1RKD mice. These results showed that exenatide dosing time-dependently affects the hepatic circadian clock through the central GLP-1 system. Exenatide administration at the beginning of the active period (i.e., in the morning for humans) might prevent disruption of the peripheral clocks caused by irregular eating habits.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.