Gui Ma, Ang Gao, Jiani Chen, Peng Liu, Rakesh Sarda, Jessica Gulliver, Yidan Wang, Carstyn Joiner, Mingshan Hu, Eui-Jun Kim, Herman Yeger, Hau D Le, Xiang Chen, Wan-Ju Li, Wei Xu
{"title":"Modeling high-risk Wilms tumors enables the discovery of therapeutic vulnerability.","authors":"Gui Ma, Ang Gao, Jiani Chen, Peng Liu, Rakesh Sarda, Jessica Gulliver, Yidan Wang, Carstyn Joiner, Mingshan Hu, Eui-Jun Kim, Herman Yeger, Hau D Le, Xiang Chen, Wan-Ju Li, Wei Xu","doi":"10.1016/j.xcrm.2024.101770","DOIUrl":null,"url":null,"abstract":"<p><p>Wilms tumor (WT) is the most common pediatric kidney cancer treated with standard chemotherapy. However, less-differentiated blastemal type of WT often relapses. To model the high-risk WT for therapeutic intervention, we introduce pluripotency factors into WiT49, a mixed-type WT cell line, to generate partially reprogrammed cells, namely WiT49-PRCs. When implanted into the kidney capsule in mice, WiT49-PRCs form kidney tumors and develop both liver and lung metastases, whereas WiT49 tumors do not metastasize. Histological characterization and gene expression signatures demonstrate that WiT49-PRCs recapitulate blastemal-predominant WTs. Moreover, drug screening in isogeneic WiT49 and WiT49-PRCs leads to the identification of epithelial- or blastemal-predominant WT-sensitive drugs, whose selectivity is validated in patient-derived xenografts (PDXs). Histone deacetylase (HDAC) inhibitors (e.g., panobinostat and romidepsin) are found universally effective across different WT and more potent than doxorubicin in PDXs. Taken together, WiT49-PRCs serve as a blastemal-predominant WT model for therapeutic intervention to treat patients with high-risk WT.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513831/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101770","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Wilms tumor (WT) is the most common pediatric kidney cancer treated with standard chemotherapy. However, less-differentiated blastemal type of WT often relapses. To model the high-risk WT for therapeutic intervention, we introduce pluripotency factors into WiT49, a mixed-type WT cell line, to generate partially reprogrammed cells, namely WiT49-PRCs. When implanted into the kidney capsule in mice, WiT49-PRCs form kidney tumors and develop both liver and lung metastases, whereas WiT49 tumors do not metastasize. Histological characterization and gene expression signatures demonstrate that WiT49-PRCs recapitulate blastemal-predominant WTs. Moreover, drug screening in isogeneic WiT49 and WiT49-PRCs leads to the identification of epithelial- or blastemal-predominant WT-sensitive drugs, whose selectivity is validated in patient-derived xenografts (PDXs). Histone deacetylase (HDAC) inhibitors (e.g., panobinostat and romidepsin) are found universally effective across different WT and more potent than doxorubicin in PDXs. Taken together, WiT49-PRCs serve as a blastemal-predominant WT model for therapeutic intervention to treat patients with high-risk WT.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.