Shengbo Huang , Bingyi Yao , Yuanqing Guo , Xi Chen, Yuan Xu, Junze Huang, Jie Liu, Chenmeizi Liang, Yuanjin Zhang, Xin Wang
{"title":"Construction of cytochrome P450 3A and P-glycoprotein knockout rats with application in rivaroxaban-verapamil interactions","authors":"Shengbo Huang , Bingyi Yao , Yuanqing Guo , Xi Chen, Yuan Xu, Junze Huang, Jie Liu, Chenmeizi Liang, Yuanjin Zhang, Xin Wang","doi":"10.1016/j.bcp.2024.116566","DOIUrl":null,"url":null,"abstract":"<div><div>Cytochrome P450 3A (CYP3A) and P-glycoprotein (P-gp), as important metabolic enzymes and transporters, participate in the biological transformation and transport of many substances in the body. CYP3A and P-gp are closely related, with very high substrate overlap and regulation similarity, making it particularly difficult to investigate the function of one or the other individually <em>in vivo</em>. Rivaroxaban and verapamil are commonly used together to treat nonvalvular atrial fibrillation in clinical practice. However, this combination therapy can increase systemic exposure to rivaroxaban and the risk of major bleeding and intracranial hemorrhage. In this study, <em>Cyp3a1/2</em> and <em>Mdr1a/b</em> quadruple gene knockout (qKO) rat model was generated and characterized for the first time. CYP3A1/2 and P-gp are completely absent in this novel rat model. Then, the qKO rat model was applied for the evaluation of the drug-drug interactions (DDI) between rivaroxaban and verapamil. The results demonstrated that CYP3A and P-gp were jointly and selectively involved in the pharmacokinetic interactions between rivaroxaban and verapamil. This study may provide useful information for understanding the role of CYP3A and P-gp in rivaroxaban-verapamil therapy and predicting the potential interaction between CYP3A and P-gp.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"230 ","pages":"Article 116566"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295224005665","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Cytochrome P450 3A (CYP3A) and P-glycoprotein (P-gp), as important metabolic enzymes and transporters, participate in the biological transformation and transport of many substances in the body. CYP3A and P-gp are closely related, with very high substrate overlap and regulation similarity, making it particularly difficult to investigate the function of one or the other individually in vivo. Rivaroxaban and verapamil are commonly used together to treat nonvalvular atrial fibrillation in clinical practice. However, this combination therapy can increase systemic exposure to rivaroxaban and the risk of major bleeding and intracranial hemorrhage. In this study, Cyp3a1/2 and Mdr1a/b quadruple gene knockout (qKO) rat model was generated and characterized for the first time. CYP3A1/2 and P-gp are completely absent in this novel rat model. Then, the qKO rat model was applied for the evaluation of the drug-drug interactions (DDI) between rivaroxaban and verapamil. The results demonstrated that CYP3A and P-gp were jointly and selectively involved in the pharmacokinetic interactions between rivaroxaban and verapamil. This study may provide useful information for understanding the role of CYP3A and P-gp in rivaroxaban-verapamil therapy and predicting the potential interaction between CYP3A and P-gp.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.