Ssu-Yun Wu , En-Chi Liao , Yueh-Feng Wen , Yi-Shiuan Wang , Han Meng , Hsiu-Chuan Chou , Hong-Lin Chan
{"title":"Exploring the effects of pemetrexed on drug resistance mechanisms in human lung adenocarcinoma and its association with PGRMC1","authors":"Ssu-Yun Wu , En-Chi Liao , Yueh-Feng Wen , Yi-Shiuan Wang , Han Meng , Hsiu-Chuan Chou , Hong-Lin Chan","doi":"10.1016/j.cbi.2024.111259","DOIUrl":null,"url":null,"abstract":"<div><div>According to the 2022 cancer statistics of the World Health Organization, lung cancer ranks among the top ten causes of death, with lung adenocarcinoma being the most prevalent type. Despite significant advancements in lung cancer therapeutics, many clinical limitations remain, primarily due to the development of drug resistance. The present study investigated the effects of pemetrexed on the drug resistance mechanisms in human lung adenocarcinoma and its association with progesterone receptor membrane component 1 (PGRMC1) expression. Given that KRAS-mutant lung adenocarcinoma cell lines (e.g., A549) exhibit a high folate synthesis activity, pemetrexed, which is structurally similar to folate, was selected as the therapeutic drug. The present study used a lung adenocarcinoma cell line (A549) and established a drug-resistant lung adenocarcinoma cell line (A549/PEM). The findings demonstrated that PGRMC1 expression was elevated in the A549/PEM cells. It has been hypothesized that PGRMC1 regulates iron absorption through heme binding, resulting in a preference for iron-related cell death pathways (ferroptosis). Our findings indicate that drug-resistant lung adenocarcinoma cells with high PGRMC1 levels exhibit elevated antioxidant activity on the cell membrane and increased reliance on iron-dependent cell death pathways. This suggests a correlation between PGRMC1 and pemetrexed-induced iron-dependent cell death. Our study contributes to the development of more effective therapeutic strategies to improve the prognosis of patients with lung adenocarcinoma, particularly those facing drug resistance challenges.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"403 ","pages":"Article 111259"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279724004058","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
According to the 2022 cancer statistics of the World Health Organization, lung cancer ranks among the top ten causes of death, with lung adenocarcinoma being the most prevalent type. Despite significant advancements in lung cancer therapeutics, many clinical limitations remain, primarily due to the development of drug resistance. The present study investigated the effects of pemetrexed on the drug resistance mechanisms in human lung adenocarcinoma and its association with progesterone receptor membrane component 1 (PGRMC1) expression. Given that KRAS-mutant lung adenocarcinoma cell lines (e.g., A549) exhibit a high folate synthesis activity, pemetrexed, which is structurally similar to folate, was selected as the therapeutic drug. The present study used a lung adenocarcinoma cell line (A549) and established a drug-resistant lung adenocarcinoma cell line (A549/PEM). The findings demonstrated that PGRMC1 expression was elevated in the A549/PEM cells. It has been hypothesized that PGRMC1 regulates iron absorption through heme binding, resulting in a preference for iron-related cell death pathways (ferroptosis). Our findings indicate that drug-resistant lung adenocarcinoma cells with high PGRMC1 levels exhibit elevated antioxidant activity on the cell membrane and increased reliance on iron-dependent cell death pathways. This suggests a correlation between PGRMC1 and pemetrexed-induced iron-dependent cell death. Our study contributes to the development of more effective therapeutic strategies to improve the prognosis of patients with lung adenocarcinoma, particularly those facing drug resistance challenges.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.